Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Overview

Non-attentive Tacotron - PyTorch Implementation

This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is some minor modifications to the original paper. We use grapheme directly, not phoneme. For that reason, we use grapheme based forced aligner by using Wav2vec 2.0. We also separate special characters from basic characters, and each is used for embedding respectively. This project is based on NVIDIA tacotron2. Feel free to use this code.

Install

  • Before you start the code, you have to check your python>=3.6, torch>=1.10.1, torchaudio>=0.10.0 version.
  • Torchaudio version is strongly restrict because of recent modification.
  • We support docker image file that we used for this implementation.
  • or You can install a package through the command below:
## download the git repository
git clone https://github.com/JoungheeKim/Non-Attentive-Tacotron.git
cd Non-Attentive-Tacotron

## install python dependency
pip install -r requirements.txt

## install this implementation locally for further development
python setup.py develop

Quickstart

  • Install a package.
  • Download Pretrained tacotron models through links below:
    • LJSpeech-1.1 (English, single-female speaker)
      • trained for 40,000 steps with 32 batch size, 8 accumulation) [LINK]
    • KSS Dataset (Korean, single-female speaker)
      • trained for 40,000 steps with 32 batch size, 8 accumulation) [LINK]
      • trained for 110,000 steps with 32 batch size, 8 accumulation) [LINK]
  • Download Pretrained VocGAN vocoder corresponding tacotron model in this [LINK]
  • Run a python code below:
## import library
from tacotron import get_vocgan
from tacotron.model import NonAttentiveTacotron
from tacotron.tokenizer import BaseTokenizer
import torch

## set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

## set pretrained model path
generator_path = '???'
tacotron_path = '???'

## load generator model
generator = get_vocgan(generator_path)
generator.eval()

## load tacotron model
tacotron = NonAttentiveTacotron.from_pretrained(tacotron_path)
tacotron.eval()

## load tokenizer
tokenizer = BaseTokenizer.from_pretrained(tacotron_path)

## Inference
text = 'This is a non attentive tacotron.'
encoded_text = tokenizer.encode(text)
encoded_torch_text = {key: torch.tensor(item, dtype=torch.long).unsqueeze(0).to(device) for key, item in encoded_text.items()}

with torch.no_grad():
    ## make log mel-spectrogram
    tacotron_output = tacotron.inference(**encoded_torch_text)
    
    ## make audio
    audio = generator.generate_audio(**tacotron_output)

Preprocess & Train

1. Download Dataset

2. Build Forced Aligned Information.

  • Non-Attentive Tacotron is duration based model.
  • So, alignment information between grapheme and audio is essential.
  • We make alignment information using Wav2vec 2.0 released from fairseq.
  • We also support pretrained wav2vec 2.0 model for Korean in this [LINK].
  • The Korean Wav2vec 2.0 model is trained on aihub korean dialog dataset to generate grapheme based prediction described in K-Wav2vec 2.0.
  • The English model is automatically downloaded when you run the code.
  • Run the command below:
## 1. LJSpeech example
## set your data path and audio path(examples are below:)
AUDIO_PATH=/code/gitRepo/data/LJSpeech-1.1/wavs
SCRIPT_PATH=/code/gitRepo/data/LJSpeech-1.1/metadata.csv

## ljspeech forced aligner
## check config options in [configs/preprocess_ljspeech.yaml]
python build_aligned_info.py \
    base.audio_path=${AUDIO_PATH} \
    base.script_path=${SCRIPT_PATH} \
    --config-name preprocess_ljspeech
    
    
## 2. KSS Dataset 
## set your data path and audio path(examples are below:)
AUDIO_PATH=/code/gitRepo/data/kss
SCRIPT_PATH=/code/gitRepo/data/kss/transcript.v.1.4.txt
PRETRAINED_WAV2VEC=korean_wav2vec2

## kss forced aligner
## check config options in [configs/preprocess_kss.yaml]
python build_aligned_info.py \
    base.audio_path=${AUDIO_PATH} \
    base.script_path=${SCRIPT_PATH} \
    base.pretrained_model=${PRETRAINED_WAV2VEC} \
    --config-name preprocess_kss

3. Train & Evaluate

  • It is recommeded to download the pre-trained vocoder before training the non-attentive tacotron model to evaluate the model performance in training phrase.
  • You can download pre-trained VocGAN in this [LINK].
  • We only experiment with our codes on a one gpu such as 2080ti or TITAN RTX.
  • The robotic sounds are gone when I use batch size 32 with 8 accumulation corresponding to 256 batch size.
  • Run the command below:
## 1. LJSpeech example
## set your data generator path and save path(examples are below:)
GENERATOR_PATH=checkpoints_g/ljspeech_29de09d_4000.pt
SAVE_PATH=results/ljspeech

## train ljspeech non-attentive tacotron
## check config options in [configs/train_ljspeech.yaml]
python train.py \
    base.generator_path=${GENERATOR_PATH} \
    base.save_path=${SAVE_PATH} \
    --config-name train_ljspeech
  
  
    
## 2. KSS Dataset   
## set your data generator path and save path(examples are below:)
GENERATOR_PATH=checkpoints_g/vocgan_kss_pretrained_model_epoch_4500.pt
SAVE_PATH=results/kss

## train kss non-attentive tacotron
## check config options in [configs/train_kss.yaml]
python train.py \
    base.generator_path=${GENERATOR_PATH} \
    base.save_path=${SAVE_PATH} \
    --config-name train_kss

Audio Examples

Language Text with Accent(bold) Audio Sample
Korean 이 타코트론은 잘 작동한다. Sample
Korean 타코트론은 잘 작동한다. Sample
Korean 타코트론은 잘 작동한다. Sample
Korean 이 타코트론은 작동한다. Sample

Forced Aligned Information Examples

ToDo

  • Sometimes get torch NAN errors.(help me)
  • Remove robotic sounds in synthetic audio.

References

Owner
Jounghee Kim
I am interested in NLP, Representation Learning, Speech Recognition, Speech Generation.
Jounghee Kim
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022