TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Overview

Tensorflow- MaskRCNN Steps

git clone https://github.com/amalaj7/TFOD-MASKRCNN.git
1.  conda create -n tfod python=3.6   
2.  conda activate tfod  
3.  pip install pillow lxml Cython contextlib2 jupyter matplotlib pandas opencv-python tensorflow==1.15.0 (for GPU- tensorflow-gpu)
4.  conda install -c anaconda protobuf   
5.  go to project path 'models/research'
6.  protoc object_detection/protos/*.proto --python_out=.  
7.  python setup.py install

Install COCO API

8) pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

Resize images in a folder

9) python resize_images.py -d train_images/ -s 800 600

Put images and annotations in corresponding folders inside images/ (Annotations are in COCO format)

10)  python create_coco_tf_record.py --logtostderr --train_image_dir=images/train_images --test_image_dir=images/test_images --train_annotations_file=coco_annotations/train.json --test_annotations_file=coco_annotations/test.json --include_masks=True --output_dir=./
  • copy nets and deployment folder and export_inference_graph.py from slim folder and paste it in research folder

Training

  • Create a folder called "training" , inside training folder download your custom model from Model Zoo TF1 | Model Zoo TF2 , extract it and create a labelmap.pbtxt file(sample file is given in training folder) that contains the class labels
  • Alterations in the config file , copy the config file from object_detection/samples/config and paste it in training folder or else u can use the pipeline.config that comes while downloading the pretrained model
  • Edit line no 10 - Number of classes
  • Edit line no 128 - Path to model.ckpt file (downloaded model's file)
  • Edit line no 134 - Iteration
  • Edit line no 143 - path-to-train.record
  • Edit line no 145 and 161 - path-to-labelmap
  • Edit line no 159 - path to test.record

Train model

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/mask_rcnn_resnet50_atrous_coco.config

Export Tensorflow Graph

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/mask_rcnn_resnet50_atrous_coco.config --trained_checkpoint_prefix training/model.ckpt-10000 --output_directory my_model_mask

Inference

  • Open object_detection_tutorial.ipynb and replace the necessary fields like model path, config path and test image path

Result

Segmented Result

View tensorboard

tensorboard --logdir=training

Tensorflow2 - MASKRCNN Steps

  • Almost similar steps as above .
git clone https://github.com/tensorflow/models.git
cd models/research
# Compile protos.
protoc object_detection/protos/*.proto --python_out=.
# Install TensorFlow Object Detection API.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

To test the installation

python object_detection/builders/model_builder_tf2_test.py
  • Then follow the above steps from 8 to 10 (includes downloading the pretrained model and editing the config file according to your needs)

Train the model

python model_main_tf2.py --pipeline_config_path=training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config --model_dir=training --alsologtostderr

View tensorboard

tensorboard --logdir=training

Export Tensorflow Graph

python exporter_main_v2.py \
    --trained_checkpoint_dir training/model_checkpoint \
    --output_directory final_model \
    --pipeline_config_path training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config

Inference

  • For TFOD2 , you can utilize inference_from_saved_model_tf2_colab.ipynb and replace the necessary fields like model path, config path and test image path
Owner
Amal Ajay
Goals Matter, But so is the Journey and the Climb.
Amal Ajay
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022