TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Overview

Tensorflow- MaskRCNN Steps

git clone https://github.com/amalaj7/TFOD-MASKRCNN.git
1.  conda create -n tfod python=3.6   
2.  conda activate tfod  
3.  pip install pillow lxml Cython contextlib2 jupyter matplotlib pandas opencv-python tensorflow==1.15.0 (for GPU- tensorflow-gpu)
4.  conda install -c anaconda protobuf   
5.  go to project path 'models/research'
6.  protoc object_detection/protos/*.proto --python_out=.  
7.  python setup.py install

Install COCO API

8) pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

Resize images in a folder

9) python resize_images.py -d train_images/ -s 800 600

Put images and annotations in corresponding folders inside images/ (Annotations are in COCO format)

10)  python create_coco_tf_record.py --logtostderr --train_image_dir=images/train_images --test_image_dir=images/test_images --train_annotations_file=coco_annotations/train.json --test_annotations_file=coco_annotations/test.json --include_masks=True --output_dir=./
  • copy nets and deployment folder and export_inference_graph.py from slim folder and paste it in research folder

Training

  • Create a folder called "training" , inside training folder download your custom model from Model Zoo TF1 | Model Zoo TF2 , extract it and create a labelmap.pbtxt file(sample file is given in training folder) that contains the class labels
  • Alterations in the config file , copy the config file from object_detection/samples/config and paste it in training folder or else u can use the pipeline.config that comes while downloading the pretrained model
  • Edit line no 10 - Number of classes
  • Edit line no 128 - Path to model.ckpt file (downloaded model's file)
  • Edit line no 134 - Iteration
  • Edit line no 143 - path-to-train.record
  • Edit line no 145 and 161 - path-to-labelmap
  • Edit line no 159 - path to test.record

Train model

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/mask_rcnn_resnet50_atrous_coco.config

Export Tensorflow Graph

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/mask_rcnn_resnet50_atrous_coco.config --trained_checkpoint_prefix training/model.ckpt-10000 --output_directory my_model_mask

Inference

  • Open object_detection_tutorial.ipynb and replace the necessary fields like model path, config path and test image path

Result

Segmented Result

View tensorboard

tensorboard --logdir=training

Tensorflow2 - MASKRCNN Steps

  • Almost similar steps as above .
git clone https://github.com/tensorflow/models.git
cd models/research
# Compile protos.
protoc object_detection/protos/*.proto --python_out=.
# Install TensorFlow Object Detection API.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

To test the installation

python object_detection/builders/model_builder_tf2_test.py
  • Then follow the above steps from 8 to 10 (includes downloading the pretrained model and editing the config file according to your needs)

Train the model

python model_main_tf2.py --pipeline_config_path=training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config --model_dir=training --alsologtostderr

View tensorboard

tensorboard --logdir=training

Export Tensorflow Graph

python exporter_main_v2.py \
    --trained_checkpoint_dir training/model_checkpoint \
    --output_directory final_model \
    --pipeline_config_path training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config

Inference

  • For TFOD2 , you can utilize inference_from_saved_model_tf2_colab.ipynb and replace the necessary fields like model path, config path and test image path
Owner
Amal Ajay
Goals Matter, But so is the Journey and the Climb.
Amal Ajay
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022