TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Overview

Tensorflow- MaskRCNN Steps

git clone https://github.com/amalaj7/TFOD-MASKRCNN.git
1.  conda create -n tfod python=3.6   
2.  conda activate tfod  
3.  pip install pillow lxml Cython contextlib2 jupyter matplotlib pandas opencv-python tensorflow==1.15.0 (for GPU- tensorflow-gpu)
4.  conda install -c anaconda protobuf   
5.  go to project path 'models/research'
6.  protoc object_detection/protos/*.proto --python_out=.  
7.  python setup.py install

Install COCO API

8) pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

Resize images in a folder

9) python resize_images.py -d train_images/ -s 800 600

Put images and annotations in corresponding folders inside images/ (Annotations are in COCO format)

10)  python create_coco_tf_record.py --logtostderr --train_image_dir=images/train_images --test_image_dir=images/test_images --train_annotations_file=coco_annotations/train.json --test_annotations_file=coco_annotations/test.json --include_masks=True --output_dir=./
  • copy nets and deployment folder and export_inference_graph.py from slim folder and paste it in research folder

Training

  • Create a folder called "training" , inside training folder download your custom model from Model Zoo TF1 | Model Zoo TF2 , extract it and create a labelmap.pbtxt file(sample file is given in training folder) that contains the class labels
  • Alterations in the config file , copy the config file from object_detection/samples/config and paste it in training folder or else u can use the pipeline.config that comes while downloading the pretrained model
  • Edit line no 10 - Number of classes
  • Edit line no 128 - Path to model.ckpt file (downloaded model's file)
  • Edit line no 134 - Iteration
  • Edit line no 143 - path-to-train.record
  • Edit line no 145 and 161 - path-to-labelmap
  • Edit line no 159 - path to test.record

Train model

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/mask_rcnn_resnet50_atrous_coco.config

Export Tensorflow Graph

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/mask_rcnn_resnet50_atrous_coco.config --trained_checkpoint_prefix training/model.ckpt-10000 --output_directory my_model_mask

Inference

  • Open object_detection_tutorial.ipynb and replace the necessary fields like model path, config path and test image path

Result

Segmented Result

View tensorboard

tensorboard --logdir=training

Tensorflow2 - MASKRCNN Steps

  • Almost similar steps as above .
git clone https://github.com/tensorflow/models.git
cd models/research
# Compile protos.
protoc object_detection/protos/*.proto --python_out=.
# Install TensorFlow Object Detection API.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

To test the installation

python object_detection/builders/model_builder_tf2_test.py
  • Then follow the above steps from 8 to 10 (includes downloading the pretrained model and editing the config file according to your needs)

Train the model

python model_main_tf2.py --pipeline_config_path=training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config --model_dir=training --alsologtostderr

View tensorboard

tensorboard --logdir=training

Export Tensorflow Graph

python exporter_main_v2.py \
    --trained_checkpoint_dir training/model_checkpoint \
    --output_directory final_model \
    --pipeline_config_path training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config

Inference

  • For TFOD2 , you can utilize inference_from_saved_model_tf2_colab.ipynb and replace the necessary fields like model path, config path and test image path
Owner
Amal Ajay
Goals Matter, But so is the Journey and the Climb.
Amal Ajay
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022