Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

Overview

AdaptationSeg

This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes".

Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes
Yang Zhang; Philip David; Boqing Gong;
International Conference on Computer Vision, 2017
A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
Yang Zhang; Philip David;  Hassan Foroosh; Boqing Gong;
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019

[TPAMI paper] [ICCV paper] [ArXiv Extended paper] [Poster]

[New] Survey of domain adaptation for semantic segmentation

Check out our new survey of domain adaptation for semantic segmentation in our TPAMI paper.

Review

Overview

Qualitative Results

We introduced a set of constraints to domain-adapt an arbitrary segmentation convolutional neural network (CNN) trained on source domain (synthetic images) to target domain (real images) without accessing target domain annotations.

Overview

Prerequisites

  • Linux
  • A CUDA-enabled NVIDIA GPU; Recommend video memory >= 11GB

Getting Started

Installation

The code requires following dependencies:

  • Python 2/3
  • Theano (installation)
  • Keras>=2.0.5 (Lower version might encounter Conv2DTranspose problem with Theano backend) (installation; You might want to install though pip since conda only offers Keras<=2.0.2)
  • Pillow (installation)

Keras backend setup

Make sure your Keras's image_data_format is channels_first. It is recommended to use Theano as the backend. However Tensorflow should also be okay. Note that using Tensorflow will result in lower initial/baseline model performance because the baseline model was trained using Theano.

How do I check/switch them?

Download dataset

1, Download leftImg8bit_trainvaltest.zip and leftImg8bit_trainextra.zip in CityScape dataset here. (Require registration)

2, Download SYNTHIA-RAND-CITYSCAPES in SYNTHIA dataset here.

3, Download our auxiliary pre-inferred target domain properties (Including both superpixel landmark and label distribution described in the paper) & parsed annotation here.

4, Download the submodule cityscapesScripts for evaluation purpose.

5, Unzip and organize them in this way:

./
├── train_val_DA.py
├── ...
├── cityscapesScripts/
│   ├── ...
│   └── cityscapesscripts/
│       ├── ...
│       └── evaluation/...
└── data/
    ├── Image/
    │   ├── CityScape/           # Unzip from two CityScape zips
    │   │   ├── test/
    │   │   ├── train/
    │   │   ├── train_extra/
    │   │   └── val/
    │   └── SYNTHIA/             # Unzip from the SYNTHIA dataset
    │       └── train/
    ├── label_distribution/      # Unzip from our auxiliary dataset
    │   └── ...
    ├── segmentation_annotation/ # Unzip from our auxiliary dataset
    │   └── ...
    ├── SP_labels/               # Unzip from our auxiliary dataset
    │   └── ...
    └── SP_landmark/             # Unzip from our auxiliary dataset
        └── ...

(Hint: If you have already downloaded the datasets but do not want to move them around, you may want to create some symbolic links of exsiting local datasets)

Training

Run train_val_FCN_DA.py either in your favorite Python IDE or the terminal by typing:

python train_val_FCN_DA.py

This would train the model for six epochs and save the best model during the training. You can stop it and continue to the evaluation during training if you feel it takes too long, however, performance would not be guaranteed then.

Evaluation

After running train_val_FCN_DA.py for at least 500 steps, run test_FCN_DA.py either in your favorite Python IDE or the terminal by typing:

python test_FCN_DA.py

This would evaluate both pre-trained SYNTHIA-FCN and adapted FCN over CityScape dataset and print both mean IoU.

Note

The original framework was implemented in Keras 1 with a custom transposed convolution ops. The performance might be slightly different from the ones reported in the paper. Also, some new commits in TF/Theano optimizer implementation after the code release has broken the losses' numerical stability. I have changed code's optimizer to SGD despite the original paper used Adadelta. You are welcome to try Adadelta/Adam however it seems that they will result in a NaN loss right after training starts. If the NaN problem persists, try to remove the label distribution loss from the training.

Citation

Please cite our paper if this code benefits your reseaarch:

@InProceedings{Zhang_2017_ICCV,
author = {Zhang, Yang and David, Philip and Gong, Boqing},
title = {Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
volume={2},
number={5},
pages={6},
month = {Oct},
year = {2017}
}

@ARTICLE{Zhang_2019_TPAMI,
author={Zhang, Yang and David, Philip and Foroosh, Hassan and Gong, Boqing},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes},
year={2019},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2019.2903401},
ISSN={1939-3539},
month={},}
Owner
Yang Zhang
Perception @ Waymo
Yang Zhang
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022