This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

Overview

PeekingDuckling

1. Description

This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Clarence, Eric Lee and Eric Kwok from other detected faces (Others).

We will be using the PeekingDuck framework for this mini project.

1.1 Example

Face recognition example

2. Usage

2.1 Running the PeekingDuck nodes directly

python -m src.runner
usage: runner.py [-h] [--type {live_video,recorded_video,live_video_and_save}] [--input_filepath INPUT_FILEPATH] [--input_source INPUT_SOURCE] [--save_video_path SAVE_VIDEO_PATH] [--fps FPS]

Facial Recoginition algorithm

optional arguments:
  -h, --help            show this help message and exit
  --type {live_video,recorded_video,live_video_and_save}
                        Whether to use live webcam video or from a recorded video, or from a live webcam video and saving the recorded frames as a video file.
  --input_filepath INPUT_FILEPATH
                        The path to your video files if --type is 'recorded_video'
  --input_source INPUT_SOURCE
                        Input source integer value. Refer to cv2 VideoCapture class. Applicable for --type ['live_video' | 'live_video_and_save']
  --save_video_path SAVE_VIDEO_PATH
                        Path for video to be saved. Applicable for --type 'live_video_and_save'
  --fps FPS             Frames per second for video to be saved. Applicable for --type 'live_video_and_save'

2.2 Using the PeekingDuck from the web interface

python -m src.camera

2.3 Face recognition using only 1 photo

python -m src.app

On a separate terminal, issue the following command

python -m src.python_client <path_to_your_image>

3. Model

3.1 Face Detection

In this repository, we will be using the the library from PeekingDuck to perform facial detection.

For the face detection, the MTCNN pretrained model from the PeekingDuck's framework was being implemented.

3.2 Face Identification

For face identification, cropped images (224 x 224) obtained from Face detection stage is passed to the pretrained RESNET50 model (trained on VGGFace2 dataset) with a global average pooling layer to obtain the Face Embedding. The face embedding is then used to compare to the database of face embeddings obtained from the members to verify if the detected face belongs to one of the 3 members.
Face classification Comparison of the face embedding is done using a 1-NN model, and a threshold is set using cosine similarity, below which the image will be classified as 'others'

The face embeddings were built using 651 images from Clarence, 644 images from Eric Kwok and 939 images from Eric Lee.

A low dimensional representation of the face embedding database of the 3 members using the first 2 principal components from the PCA of the face embeddings can be found in the image below.
PCA of members' face embeddings

Augmentation to have the 4 extra images per image using random rotations of (+/-) 20 degrees and random contrasting were used in building the database so that it can be more robust. The PCA of the augmented database can be seen in the image below
PCA of members' face embeddings with augmentation

4. Performance

The facial classification algorithm was able to achieve an overall accuracy of 99.4% and a weighted F1 score of 99.4% with 183 test images from Clarence, 179 from Eric Kwok, 130 from Eric Lee and 13,100 images from non-members obtained from this database.

Below shows the confusion matrix from the test result.
confusion matrix of test result.

The test was conducted with the tuned threshold on the validation dataset, and the performance of the model with various thresholds can be seen in the graph below. The threshold that yields the best performance is around 0.342.
Performance vs various thresholds

5. Authors and Acknowledgements

The authors would like to thank the mentor Lee Ping for providing us with the technical suggestions as well as the inputs on the implementation of this project.

Authors:

References (Non exhausive)

Owner
Eric Kwok
I am currently an AI apprentice at AISG and my main focus is in the area of CV. I also have an interest and some experience in the field of robotics.
Eric Kwok
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022