Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

Overview

AgentFormer

This repo contains the official implementation of our paper:

AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan, Xinshuo Weng, Yanglan Ou, Kris Kitani
ICCV 2021
[website] [paper]

Overview

Loading AgentFormer Overview

Important Note

We have recently noticed a normalization bug in the code and after fixing it, the performance of our method is worse than the original numbers reported in the ICCV paper. For comparision, please use the correct numbers in the updated arXiv version.

Installation

Environment

  • Tested OS: MacOS, Linux
  • Python >= 3.7
  • PyTorch == 1.8.0

Dependencies:

  1. Install PyTorch 1.8.0 with the correct CUDA version.
  2. Install the dependencies:
    pip install -r requirements.txt
    

Datasets

  • For the ETH/UCY dataset, we already included a converted version compatible with our dataloader under datasets/eth_ucy.
  • For the nuScenes dataset, the following steps are required:
    1. Download the orignal nuScenes dataset. Checkout the instructions here.
    2. Follow the instructions of nuScenes prediction challenge. Download and install the map expansion.
    3. Run our script to obtain a processed version of the nuScenes dataset under datasets/nuscenes_pred:
      python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
      

Pretrained Models

  • You can download pretrained models from Google Drive or BaiduYun (password: 9rvb) to reproduce the numbers in the paper.
  • Once the agentformer_models.zip file is downloaded, place it under the root folder of this repo and unzip it:
    unzip agentformer_models.zip
    
    This will place the models under the results folder. Note that the pretrained models directly correspond to the config files in cfg.

Evaluation

ETH/UCY

Run the following command to test pretrained models for the ETH dataset:

python test.py --cfg eth_agentformer --gpu 0

You can replace eth with {hotel, univ, zara1, zara2} to test other datasets in ETH/UCY. You should be able to get the numbers reported in the paper as shown in this table:

Ours ADE FDE
ETH 0.45 0.75
Hotel 0.14 0.22
Univ 0.25 0.45
Zara1 0.18 0.30
Zara2 0.14 0.24
Avg 0.23 0.39

nuScenes

Run the following command to test pretrained models for the nuScenes dataset:

python test.py --cfg nuscenes_5sample_agentformer --gpu 0

You can replace 5sample with 10sample to compute all the metrics (ADE_5, FDE_5, ADE_10, FDE_10). You should be able to get the numbers reported in the paper as shown in this table:

ADE_5 FDE_5 ADE_10 FDE_10
Ours 1.856 3.889 1.452 2.856

Training

You can train your own models with your customized configs. Here we take the ETH dataset as an example, but you can train models for other datasets with their corresponding configs. AgentFormer requires two-stage training:

  1. Train the AgentFormer VAE model (everything but the trajectory sampler):
    python train.py --cfg user_eth_agentformer_pre --gpu 0
    
  2. Once the VAE model is trained, train the AgentFormer DLow model (trajectory sampler):
    python train.py --cfg user_eth_agentformer --gpu 0
    
    Note that you need to change the pred_cfg field in user_eth_agentformer to the config you used in step 1 (user_eth_agentformer_pre) and change the pred_epoch to the VAE model epoch you want to use.

Citation

If you find our work useful in your research, please cite our paper AgentFormer:

@inproceedings{yuan2021agent,
  title={AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting},
  author={Yuan, Ye and Weng, Xinshuo and Ou, Yanglan and Kitani, Kris},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

License

Please see the license for further details.

Owner
Ye Yuan
PhD student at Robotics Institute, CMU
Ye Yuan
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022