Faster RCNN with PyTorch

Overview

Faster RCNN with PyTorch

Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects. I still remember it costed one week for me to figure out how to build cuda code as a pytorch layer :). But actually this is not a good implementation and I didn't achieve the same mAP as the original caffe code.

This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). So I suggest:

  • You can still read and study this code if you want to re-implement faster rcnn by yourself;
  • You can use the better PyTorch implementation by ruotianluo or Detectron.pytorch if you want to train faster rcnn with your own data;

This is a PyTorch implementation of Faster RCNN. This project is mainly based on py-faster-rcnn and TFFRCNN.

For details about R-CNN please refer to the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks by Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun.

Progress

  • Forward for detecting
  • RoI Pooling layer with C extensions on CPU (only forward)
  • RoI Pooling layer on GPU (forward and backward)
  • Training on VOC2007
  • TensroBoard support
  • Evaluation

Installation and demo

  1. Install the requirements (you can use pip or Anaconda):

    conda install pip pyyaml sympy h5py cython numpy scipy
    conda install -c menpo opencv3
    pip install easydict
    
  2. Clone the Faster R-CNN repository

    git clone [email protected]:longcw/faster_rcnn_pytorch.git
  3. Build the Cython modules for nms and the roi_pooling layer

    cd faster_rcnn_pytorch/faster_rcnn
    ./make.sh
  4. Download the trained model VGGnet_fast_rcnn_iter_70000.h5 and set the model path in demo.py

  5. Run demo python demo.py

Training on Pascal VOC 2007

Follow this project (TFFRCNN) to download and prepare the training, validation, test data and the VGG16 model pre-trained on ImageNet.

Since the program loading the data in faster_rcnn_pytorch/data by default, you can set the data path as following.

cd faster_rcnn_pytorch
mkdir data
cd data
ln -s $VOCdevkit VOCdevkit2007

Then you can set some hyper-parameters in train.py and training parameters in the .yml file.

Now I got a 0.661 mAP on VOC07 while the origin paper got a 0.699 mAP. You may need to tune the loss function defined in faster_rcnn/faster_rcnn.py by yourself.

Training with TensorBoard

With the aid of Crayon, we can access the visualisation power of TensorBoard for any deep learning framework.

To use the TensorBoard, install Crayon (https://github.com/torrvision/crayon) and set use_tensorboard = True in faster_rcnn/train.py.

Evaluation

Set the path of the trained model in test.py.

cd faster_rcnn_pytorch
mkdir output
python test.py

License: MIT license (MIT)

Owner
Long Chen
Computer Vision
Long Chen
Reviving Iterative Training with Mask Guidance for Interactive Segmentation

This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation

Visual Understanding Lab @ Samsung AI Center Moscow 406 Jan 01, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023