통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Related tags

Deep LearningLucas
Overview


Lucas

Hits


coded by linux shell

목차


Patch Note 📜


Team member

Contributors/People

ympark gbhwang cbchun
https://github.com/pym7857 https://github.com/gbhwang https://github.com/bermmie1000
  • You can see team member and github profile
  • You should probably find team member's lastest project



Requirements

  • python 3.xx



Mac버전 CookieCutter (autoenv)

🚫 주의
$> brew install autoenv 로 다운로드 받아서 실행시키면 터미널 고장납니다.
반드시 autoenv Github 에서 git clone 으로 다운받아 주세요. (현재 시점 21.3.24)

⚠️ mac버전만 소개합니다.

1. How to Install autoenv

$ git clone git://github.com/inishchith/autoenv.git ~/.autoenv

2.폴더 진입 시, activate 구현하기

$ echo 'source ~/.autoenv/activate.sh' >> ~/.zshrc
$ source ~/.zshrc

🔔 하단의.env파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env 파일
echo "HELLO autoenv"
{
    source .dev-venv/bin/activate
    echo "virtual env is successfully activated!"
} ||
{
    echo "[virtual env start] is failed!"
}

.env파일 설정 후 첫 폴더 진입시 .env파일을 신뢰하고 실행할지 않을 지에 대한 동의가 나타납니다. autoenv 이 부분은 .env파일이 악의적으로 변경되었을때 사용자에게 알리기 위해서 있기 때문에 즐거운 마음으로 Y를 눌러줍시다.
이제 정상적으로 가상환경이 activate된 것을 확인할 수 있습니다.

3.폴더 탈출 시, deactivate 구현하기

$> vi ~/.zshrc

마지막줄에 다음의 명령어를 추가해줍니다.

export AUTOENV_ENABLE_LEAVE='"enabled"' 

🔔 하단의.env.leave파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env.leave 파일
echo "BYEBYE"
{
    deactivate
    echo "virtual env is successfully deactivated!"
} ||
{
    echo "[virtual env quit] is failed!"
}

.env.leave파일 설정 후 해당 폴더에서 나가면
정상적으로 가상환경이 deactivate 되는 것을 확인할 수 있습니다.

4.Alias 설정하기

echo 'alias cookie="bash [각자 컴퓨터의 상대경로/cookie_cutter_project_dir.sh]"' >> ~/.zshrc
ex) echo 'alias cookie="bash /Users/gbhwang/Desktop/Project/Test/Lucas/mac/cookie_cutter_project_dir.sh"' >> ~/.zshrc

맥 파일경로 확인법을 참고하여
각자 mac폴더안의 cookie_cutter_project_dir.sh 파일의 경로를 확인하여 zshrc에 넣어주시면 됩니다.

이렇게 하면 cookie 명령어 만으로 간단하게 스크립트를 실행시킬 수 있게 됩니다.
위와 같이 설정하면 cookie [프로젝트 생성할 경로] [프로젝트 이름] 명령어로 프로젝트를 생성할 수 있게 됩니다.

5.How to Use

$> cd "where-you-want"
$> git clone https://github.com/LS-ELLO/Lucas.git
$> cd Lucas
$> cd mac

$> cookie [where-you-want] [your-project-name]
ex) $> cookie . test111



Windows버전 CookieCutter (ps-autoenv)

도움 주신 규본님 감사합니다.
ps-autoenv를 사용합니다.

1.How to install ps-autoenv

Powershell 실행 (관리자 권한 실행)

PS> Install-Module ps-autoenv
PS> Add-Content $PROFILE @("`n", "import-module ps-autoenv")

2.Alias 설정하기 (git-bash)

참조

  1. C:/Program Files/Git/etc/profile.d/aliases.sh 파일을 관리자 권한으로 Text Editor에 실행시킵니다.

  2. 다음의 명령어를 추가합니다.
    alias cookie='bash cookie_cutter_project_dir.sh의 상대경로'
    ex) alias cookie='bash D:/Lucas/windows/cookie_cutter_project_dir.sh'

    (aliases.sh)

    # Some good standards, which are not used if the user
    # creates his/her own .bashrc/.bash_profile
    
    # --show-control-chars: help showing Korean or accented characters
    alias ls='ls -F --color=auto --show-control-chars'
    alias ll='ls -l'
    alias cookie='bash [where-your-cookie_cutter_project_dir.sh]'
    
    case "$TERM" in
    ...

3.How to Use

Git Bash 실행

bash> cd "where-this-repo-downloaded"
bash> cd windows
bash> cookie [where-you-want] [your-project-name]
ex) cookie . 1bot

Powershell 실행

PS> Import-Module ps-autoenv
PS> cd "where-your-cookiecutter-project"
ex. PS> cd "C:\Users\ympark4\Documents\1bot"
PS> press 'Y'
🚫 PSSecurityException 오류 발생할때

https://extbrain.tistory.com/118 를 참조해서 해결주세요.



The resulting directory structure

The directory structure of your new project looks like this:

├── LICENSE
├── Makefile
├── README.md          ← The top-level README for developers using this project.
├── data
│   ├── external       ← Data from third party sources.
│   ├── interim        ← Intermediate data that has been transformed.
│   ├── processed      ← The final, canonical data sets for modeling.
│   └── raw            ← The original, immutable data dump.
├── docs               ← A default Sphinx project; see sphinx-doc.org for details
├── models             ← Trained and serialized models, model predictions, or model summaries
├── notebooks          ← Jupyter notebooks. Naming convention is a number (for ordering), the creator's initials, and a short `-` delimited description, e.g. `1.0-jqp-initial-data-exploration`.
├── references         ← Data dictionaries, manuals, and all other explanatory materials.
├── reports            ← Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        ← Generated graphics and figures to be used in reporting
├── requirements.txt   ← The requirements file for reproducing the analysis environment, e.g. generated with `pip freeze > requirements.txt`
├── setup.py           ← makes project pip installable (pip install -e .) so src can be imported
├── src                ← Source code for use in this project.
│   ├── __init__.py  
│   ├── dataread      
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── features       
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── models     
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── visualization    
│   │   └── __init__.py
│   │   └── example.py
├── App               
│   ├── android       
│   ├── ios           
│   ├── lib            
│   │   └── models
│   │   └── main.dart
│
└── .gitignore        



Owner
ello
ello
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022