Learning Saliency Propagation for Semi-supervised Instance Segmentation

Overview

Learning Saliency Propagation for Semi-supervised Instance Segmentation

illustration

PyTorch Implementation

This repository contains:

  • the PyTorch implementation of ShapeProp.
  • the Classwise semi-supervision (COCO's VOC->Non-VOC) demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 16.04LTS)
  • NVIDIA GPU + CUDA CuDNN (tested on 8x GTX 2080 Ti)
  • COCO 2017 Dataset (download and unzip)
  • Please use PyTorch1.1 + Apex(#1564802) to avoid compilation errors

Getting started

  1. Create a conda environment:

    conda create --name ShapeProp -y
    conda activate ShapeProp
  2. Clone this repo:

    # git version must be greater than 1.9.10
    git clone https://github.com/ucbdrive/ShapeProp.git
    cd ShapeProp
    export DIR=$(pwd)
  3. Install dependencies via a single command bash $DIR/scripts/install.sh or do it manually as follows:

    # Python
    conda install -y ipython pip
    # PyTorch
    conda install -y pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
    # Install deps
    pip install ninja yacs cython matplotlib tqdm opencv-python
    rm -r libs
    mkdir libs
    # COCOAPI
    cd $DIR/libs
    git clone https://github.com/cocodataset/cocoapi.git
    cd cocoapi/PythonAPI
    python setup.py build_ext install
    # APEX
    cd $DIR/libs
    git clone https://github.com/NVIDIA/apex.git
    cd apex
    python setup.py install --cuda_ext --cpp_ext
    # ShapeProp
    cd $DIR
    python setup.py build develop
    
  4. Prepare dataset:

    cd $DIR
    mkdir datasets
    ln -s PATH_TO_YOUR_COCO_DATASET datasets/coco
    bash scripts/prepare_data.sh
  5. Run the classwise semi-supervision demo:

    cd $DIR
    # Mask R-CNN w/ ShapeProp
    bash scripts/train_shapeprop.sh
    # Mask R-CNN
    bash scripts/train_baseline.sh

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2020ShapeProp,
    author = {Zhou, Yanzhao and Wang, Xin and and Jiao, Jianbin and Darrell, Trevor and Yu, Fisher},
    title = {Learning Saliency Propagation for Semi-supervised Instance Segmentation},
    booktitle = {CVPR},
    year = {2020}
}
Owner
Berkeley DeepDrive
Berkeley DeepDrive
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022