Learning Saliency Propagation for Semi-supervised Instance Segmentation

Overview

Learning Saliency Propagation for Semi-supervised Instance Segmentation

illustration

PyTorch Implementation

This repository contains:

  • the PyTorch implementation of ShapeProp.
  • the Classwise semi-supervision (COCO's VOC->Non-VOC) demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 16.04LTS)
  • NVIDIA GPU + CUDA CuDNN (tested on 8x GTX 2080 Ti)
  • COCO 2017 Dataset (download and unzip)
  • Please use PyTorch1.1 + Apex(#1564802) to avoid compilation errors

Getting started

  1. Create a conda environment:

    conda create --name ShapeProp -y
    conda activate ShapeProp
  2. Clone this repo:

    # git version must be greater than 1.9.10
    git clone https://github.com/ucbdrive/ShapeProp.git
    cd ShapeProp
    export DIR=$(pwd)
  3. Install dependencies via a single command bash $DIR/scripts/install.sh or do it manually as follows:

    # Python
    conda install -y ipython pip
    # PyTorch
    conda install -y pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
    # Install deps
    pip install ninja yacs cython matplotlib tqdm opencv-python
    rm -r libs
    mkdir libs
    # COCOAPI
    cd $DIR/libs
    git clone https://github.com/cocodataset/cocoapi.git
    cd cocoapi/PythonAPI
    python setup.py build_ext install
    # APEX
    cd $DIR/libs
    git clone https://github.com/NVIDIA/apex.git
    cd apex
    python setup.py install --cuda_ext --cpp_ext
    # ShapeProp
    cd $DIR
    python setup.py build develop
    
  4. Prepare dataset:

    cd $DIR
    mkdir datasets
    ln -s PATH_TO_YOUR_COCO_DATASET datasets/coco
    bash scripts/prepare_data.sh
  5. Run the classwise semi-supervision demo:

    cd $DIR
    # Mask R-CNN w/ ShapeProp
    bash scripts/train_shapeprop.sh
    # Mask R-CNN
    bash scripts/train_baseline.sh

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2020ShapeProp,
    author = {Zhou, Yanzhao and Wang, Xin and and Jiao, Jianbin and Darrell, Trevor and Yu, Fisher},
    title = {Learning Saliency Propagation for Semi-supervised Instance Segmentation},
    booktitle = {CVPR},
    year = {2020}
}
Owner
Berkeley DeepDrive
Berkeley DeepDrive
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022