Code for paper "Multi-level Disentanglement Graph Neural Network"

Overview

Multi-level Disentanglement Graph Neural Network (MD-GNN)

This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

  • Datasets (Cora, Citeseer, Pubmed, Synthetic, and ZINC)

  • Training paradigm for node classification, graph classification, and graph regression tasks

  • Visualization

  • Evaluation metrics

Main Requirements

  • dgl==0.4.3.post2
  • networkx==2.4
  • numpy==1.18.1
  • ogb==1.1.1
  • scikit-learn==0.22.2.post1
  • scipy==1.4.1
  • torch==1.5.0

Description

  • train.py

    • main() -- Train a new model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • evaluate() -- Test the learned model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • main_synthetic() -- Train a new model for graph classification task on the Synthetic dataset
    • evaluate_synthetic() -- Test the learned model for graph classification task on the Synthetic dataset
    • main_zinc() -- Train a new model for graph regression task on the ZINC datasets
    • evaluate_zinc() -- Test the learned model for graph regression task on the ZINC datasets
  • dataset.py

    • load_data() -- Load data of selected dataset
  • MDGNN.py

    • MDGNN() -- model and loss
  • utils.py

    • evaluate_att() -- Evaluate attribute-level disentanglement with the visualization of relation-related attributes
    • evaluate_corr() -- Evaluate node-level disentanglement with the correlation analysis of latent features
    • evaluate_graph() -- Evaluate graph-level disentanglement with the visualization of disentangled relation graphs

Running the code

  1. Install the required dependency packages and unzip files in the data folder.

  2. We use DGL to implement all the GNN models on three citation datasets (Cora, Citeseer, and Pubmed). In order to evaluate the model with different splitting strategy (fewer and harder label rates), you need to replace the following file with the citation_graph.py provided.

dgl/data/citation_graph.py

  1. To get the results on a specific dataset, run with proper hyperparameters
python train.py --dataset data_name

where the data_name is one of the five datasets (cora, citeseer, pubmed, synthetic, and zinc). The model as well as the training log will be saved to the corresponding dir in ./log for evaluation.

  1. The evaluation the performance of three-level disentanglement performance, run
python utils.py

License

MD-GNN is released under the MIT license.

Owner
Lirong Wu
Ph.D. student on Graph.
Lirong Wu
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video đŸ“č Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) GĂŒl Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023