Code for paper "Multi-level Disentanglement Graph Neural Network"

Overview

Multi-level Disentanglement Graph Neural Network (MD-GNN)

This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

  • Datasets (Cora, Citeseer, Pubmed, Synthetic, and ZINC)

  • Training paradigm for node classification, graph classification, and graph regression tasks

  • Visualization

  • Evaluation metrics

Main Requirements

  • dgl==0.4.3.post2
  • networkx==2.4
  • numpy==1.18.1
  • ogb==1.1.1
  • scikit-learn==0.22.2.post1
  • scipy==1.4.1
  • torch==1.5.0

Description

  • train.py

    • main() -- Train a new model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • evaluate() -- Test the learned model for node classification task on the Cora, Citeseer, and Pubmed datasets
    • main_synthetic() -- Train a new model for graph classification task on the Synthetic dataset
    • evaluate_synthetic() -- Test the learned model for graph classification task on the Synthetic dataset
    • main_zinc() -- Train a new model for graph regression task on the ZINC datasets
    • evaluate_zinc() -- Test the learned model for graph regression task on the ZINC datasets
  • dataset.py

    • load_data() -- Load data of selected dataset
  • MDGNN.py

    • MDGNN() -- model and loss
  • utils.py

    • evaluate_att() -- Evaluate attribute-level disentanglement with the visualization of relation-related attributes
    • evaluate_corr() -- Evaluate node-level disentanglement with the correlation analysis of latent features
    • evaluate_graph() -- Evaluate graph-level disentanglement with the visualization of disentangled relation graphs

Running the code

  1. Install the required dependency packages and unzip files in the data folder.

  2. We use DGL to implement all the GNN models on three citation datasets (Cora, Citeseer, and Pubmed). In order to evaluate the model with different splitting strategy (fewer and harder label rates), you need to replace the following file with the citation_graph.py provided.

dgl/data/citation_graph.py

  1. To get the results on a specific dataset, run with proper hyperparameters
python train.py --dataset data_name

where the data_name is one of the five datasets (cora, citeseer, pubmed, synthetic, and zinc). The model as well as the training log will be saved to the corresponding dir in ./log for evaluation.

  1. The evaluation the performance of three-level disentanglement performance, run
python utils.py

License

MD-GNN is released under the MIT license.

Owner
Lirong Wu
Ph.D. student on Graph.
Lirong Wu
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022