3.8% and 18.3% on CIFAR-10 and CIFAR-100

Overview

Wide Residual Networks

This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko and Nikos Komodakis.

Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train.

To tackle these problems, in this work we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts.

For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks. We further show that WRNs achieve incredibly good results (e.g., achieving new state-of-the-art results on CIFAR-10, CIFAR-100, SVHN, COCO and substantial improvements on ImageNet) and train several times faster than pre-activation ResNets.

Update (August 2019): Pretrained ImageNet WRN models are available in torchvision 0.4 and PyTorch Hub, e.g. loading WRN-50-2:

model = torch.hub.load('pytorch/vision', 'wide_resnet50_2', pretrained=True)

Update (November 2016): We updated the paper with ImageNet, COCO and meanstd preprocessing CIFAR results. If you're comparing your method against WRN, please report correct preprocessing numbers because they give substantially different results.

tldr; ImageNet WRN-50-2-bottleneck (ResNet-50 with wider inner bottleneck 3x3 convolution) is significantly faster than ResNet-152 and has better accuracy; on CIFAR meanstd preprocessing (as in fb.resnet.torch) gives better results than ZCA whitening; on COCO wide ResNet with 34 layers outperforms even Inception-v4-based Fast-RCNN model in single model performance.

Test error (%, flip/translation augmentation, meanstd normalization, median of 5 runs) on CIFAR:

Network CIFAR-10 CIFAR-100
pre-ResNet-164 5.46 24.33
pre-ResNet-1001 4.92 22.71
WRN-28-10 4.00 19.25
WRN-28-10-dropout 3.89 18.85

Single-time runs (meanstd normalization):

Dataset network test perf.
CIFAR-10 WRN-40-10-dropout 3.8%
CIFAR-100 WRN-40-10-dropout 18.3%
SVHN WRN-16-8-dropout 1.54%
ImageNet (single crop) WRN-50-2-bottleneck 21.9% top-1, 5.79% top-5
COCO-val5k (single model) WRN-34-2 36 mAP

See http://arxiv.org/abs/1605.07146 for details.

bibtex:

@INPROCEEDINGS{Zagoruyko2016WRN,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {Wide Residual Networks},
    booktitle = {BMVC},
    year = {2016}}

Pretrained models

ImageNet

WRN-50-2-bottleneck (wider bottleneck), see pretrained for details
Download (263MB): https://yadi.sk/d/-8AWymOPyVZns

There are also PyTorch and Tensorflow model definitions with pretrained weights at https://github.com/szagoruyko/functional-zoo/blob/master/wide-resnet-50-2-export.ipynb

COCO

Coming

Installation

The code depends on Torch http://torch.ch. Follow instructions here and run:

luarocks install torchnet
luarocks install optnet
luarocks install iterm

For visualizing training curves we used ipython notebook with pandas and bokeh.

Usage

Dataset support

The code supports loading simple datasets in torch format. We provide the following:

To whiten CIFAR-10 and CIFAR-100 we used the following scripts https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/datasets/make_cifar10_gcn_whitened.py and then converted to torch using https://gist.github.com/szagoruyko/ad2977e4b8dceb64c68ea07f6abf397b and npy to torch converter https://github.com/htwaijry/npy4th.

We are running ImageNet experiments and will update the paper and this repo soon.

Training

We provide several scripts for reproducing results in the paper. Below are several examples.

model=wide-resnet widen_factor=4 depth=40 ./scripts/train_cifar.sh

This will train WRN-40-4 on CIFAR-10 whitened (supposed to be in datasets folder). This network achieves about the same accuracy as ResNet-1001 and trains in 6 hours on a single Titan X. Log is saved to logs/wide-resnet_$RANDOM$RANDOM folder with json entries for each epoch and can be visualized with itorch/ipython later.

For reference we provide logs for this experiment and ipython notebook to visualize the results. After running it you should see these training curves:

viz

Another example:

model=wide-resnet widen_factor=10 depth=28 dropout=0.3 dataset=./datasets/cifar100_whitened.t7 ./scripts/train_cifar.sh

This network achieves 20.0% error on CIFAR-100 in about a day on a single Titan X.

Multi-GPU is supported with nGPU=n parameter.

Other models

Additional models in this repo:

Implementation details

The code evolved from https://github.com/szagoruyko/cifar.torch. To reduce memory usage we use @fmassa's optimize-net, which automatically shares output and gradient tensors between modules. This keeps memory usage below 4 Gb even for our best networks. Also, it can generate network graph plots as the one for WRN-16-2 in the end of this page.

Acknowledgements

We thank startup company VisionLabs and Eugenio Culurciello for giving us access to their clusters, without them ImageNet experiments wouldn't be possible. We also thank Adam Lerer and Sam Gross for helpful discussions. Work supported by EC project FP7-ICT-611145 ROBOSPECT.

A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022