3.8% and 18.3% on CIFAR-10 and CIFAR-100

Overview

Wide Residual Networks

This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko and Nikos Komodakis.

Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train.

To tackle these problems, in this work we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts.

For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks. We further show that WRNs achieve incredibly good results (e.g., achieving new state-of-the-art results on CIFAR-10, CIFAR-100, SVHN, COCO and substantial improvements on ImageNet) and train several times faster than pre-activation ResNets.

Update (August 2019): Pretrained ImageNet WRN models are available in torchvision 0.4 and PyTorch Hub, e.g. loading WRN-50-2:

model = torch.hub.load('pytorch/vision', 'wide_resnet50_2', pretrained=True)

Update (November 2016): We updated the paper with ImageNet, COCO and meanstd preprocessing CIFAR results. If you're comparing your method against WRN, please report correct preprocessing numbers because they give substantially different results.

tldr; ImageNet WRN-50-2-bottleneck (ResNet-50 with wider inner bottleneck 3x3 convolution) is significantly faster than ResNet-152 and has better accuracy; on CIFAR meanstd preprocessing (as in fb.resnet.torch) gives better results than ZCA whitening; on COCO wide ResNet with 34 layers outperforms even Inception-v4-based Fast-RCNN model in single model performance.

Test error (%, flip/translation augmentation, meanstd normalization, median of 5 runs) on CIFAR:

Network CIFAR-10 CIFAR-100
pre-ResNet-164 5.46 24.33
pre-ResNet-1001 4.92 22.71
WRN-28-10 4.00 19.25
WRN-28-10-dropout 3.89 18.85

Single-time runs (meanstd normalization):

Dataset network test perf.
CIFAR-10 WRN-40-10-dropout 3.8%
CIFAR-100 WRN-40-10-dropout 18.3%
SVHN WRN-16-8-dropout 1.54%
ImageNet (single crop) WRN-50-2-bottleneck 21.9% top-1, 5.79% top-5
COCO-val5k (single model) WRN-34-2 36 mAP

See http://arxiv.org/abs/1605.07146 for details.

bibtex:

@INPROCEEDINGS{Zagoruyko2016WRN,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {Wide Residual Networks},
    booktitle = {BMVC},
    year = {2016}}

Pretrained models

ImageNet

WRN-50-2-bottleneck (wider bottleneck), see pretrained for details
Download (263MB): https://yadi.sk/d/-8AWymOPyVZns

There are also PyTorch and Tensorflow model definitions with pretrained weights at https://github.com/szagoruyko/functional-zoo/blob/master/wide-resnet-50-2-export.ipynb

COCO

Coming

Installation

The code depends on Torch http://torch.ch. Follow instructions here and run:

luarocks install torchnet
luarocks install optnet
luarocks install iterm

For visualizing training curves we used ipython notebook with pandas and bokeh.

Usage

Dataset support

The code supports loading simple datasets in torch format. We provide the following:

To whiten CIFAR-10 and CIFAR-100 we used the following scripts https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/datasets/make_cifar10_gcn_whitened.py and then converted to torch using https://gist.github.com/szagoruyko/ad2977e4b8dceb64c68ea07f6abf397b and npy to torch converter https://github.com/htwaijry/npy4th.

We are running ImageNet experiments and will update the paper and this repo soon.

Training

We provide several scripts for reproducing results in the paper. Below are several examples.

model=wide-resnet widen_factor=4 depth=40 ./scripts/train_cifar.sh

This will train WRN-40-4 on CIFAR-10 whitened (supposed to be in datasets folder). This network achieves about the same accuracy as ResNet-1001 and trains in 6 hours on a single Titan X. Log is saved to logs/wide-resnet_$RANDOM$RANDOM folder with json entries for each epoch and can be visualized with itorch/ipython later.

For reference we provide logs for this experiment and ipython notebook to visualize the results. After running it you should see these training curves:

viz

Another example:

model=wide-resnet widen_factor=10 depth=28 dropout=0.3 dataset=./datasets/cifar100_whitened.t7 ./scripts/train_cifar.sh

This network achieves 20.0% error on CIFAR-100 in about a day on a single Titan X.

Multi-GPU is supported with nGPU=n parameter.

Other models

Additional models in this repo:

Implementation details

The code evolved from https://github.com/szagoruyko/cifar.torch. To reduce memory usage we use @fmassa's optimize-net, which automatically shares output and gradient tensors between modules. This keeps memory usage below 4 Gb even for our best networks. Also, it can generate network graph plots as the one for WRN-16-2 in the end of this page.

Acknowledgements

We thank startup company VisionLabs and Eugenio Culurciello for giving us access to their clusters, without them ImageNet experiments wouldn't be possible. We also thank Adam Lerer and Sam Gross for helpful discussions. Work supported by EC project FP7-ICT-611145 ROBOSPECT.

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021