3.8% and 18.3% on CIFAR-10 and CIFAR-100

Overview

Wide Residual Networks

This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko and Nikos Komodakis.

Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train.

To tackle these problems, in this work we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts.

For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layer-deep networks. We further show that WRNs achieve incredibly good results (e.g., achieving new state-of-the-art results on CIFAR-10, CIFAR-100, SVHN, COCO and substantial improvements on ImageNet) and train several times faster than pre-activation ResNets.

Update (August 2019): Pretrained ImageNet WRN models are available in torchvision 0.4 and PyTorch Hub, e.g. loading WRN-50-2:

model = torch.hub.load('pytorch/vision', 'wide_resnet50_2', pretrained=True)

Update (November 2016): We updated the paper with ImageNet, COCO and meanstd preprocessing CIFAR results. If you're comparing your method against WRN, please report correct preprocessing numbers because they give substantially different results.

tldr; ImageNet WRN-50-2-bottleneck (ResNet-50 with wider inner bottleneck 3x3 convolution) is significantly faster than ResNet-152 and has better accuracy; on CIFAR meanstd preprocessing (as in fb.resnet.torch) gives better results than ZCA whitening; on COCO wide ResNet with 34 layers outperforms even Inception-v4-based Fast-RCNN model in single model performance.

Test error (%, flip/translation augmentation, meanstd normalization, median of 5 runs) on CIFAR:

Network CIFAR-10 CIFAR-100
pre-ResNet-164 5.46 24.33
pre-ResNet-1001 4.92 22.71
WRN-28-10 4.00 19.25
WRN-28-10-dropout 3.89 18.85

Single-time runs (meanstd normalization):

Dataset network test perf.
CIFAR-10 WRN-40-10-dropout 3.8%
CIFAR-100 WRN-40-10-dropout 18.3%
SVHN WRN-16-8-dropout 1.54%
ImageNet (single crop) WRN-50-2-bottleneck 21.9% top-1, 5.79% top-5
COCO-val5k (single model) WRN-34-2 36 mAP

See http://arxiv.org/abs/1605.07146 for details.

bibtex:

@INPROCEEDINGS{Zagoruyko2016WRN,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {Wide Residual Networks},
    booktitle = {BMVC},
    year = {2016}}

Pretrained models

ImageNet

WRN-50-2-bottleneck (wider bottleneck), see pretrained for details
Download (263MB): https://yadi.sk/d/-8AWymOPyVZns

There are also PyTorch and Tensorflow model definitions with pretrained weights at https://github.com/szagoruyko/functional-zoo/blob/master/wide-resnet-50-2-export.ipynb

COCO

Coming

Installation

The code depends on Torch http://torch.ch. Follow instructions here and run:

luarocks install torchnet
luarocks install optnet
luarocks install iterm

For visualizing training curves we used ipython notebook with pandas and bokeh.

Usage

Dataset support

The code supports loading simple datasets in torch format. We provide the following:

To whiten CIFAR-10 and CIFAR-100 we used the following scripts https://github.com/lisa-lab/pylearn2/blob/master/pylearn2/scripts/datasets/make_cifar10_gcn_whitened.py and then converted to torch using https://gist.github.com/szagoruyko/ad2977e4b8dceb64c68ea07f6abf397b and npy to torch converter https://github.com/htwaijry/npy4th.

We are running ImageNet experiments and will update the paper and this repo soon.

Training

We provide several scripts for reproducing results in the paper. Below are several examples.

model=wide-resnet widen_factor=4 depth=40 ./scripts/train_cifar.sh

This will train WRN-40-4 on CIFAR-10 whitened (supposed to be in datasets folder). This network achieves about the same accuracy as ResNet-1001 and trains in 6 hours on a single Titan X. Log is saved to logs/wide-resnet_$RANDOM$RANDOM folder with json entries for each epoch and can be visualized with itorch/ipython later.

For reference we provide logs for this experiment and ipython notebook to visualize the results. After running it you should see these training curves:

viz

Another example:

model=wide-resnet widen_factor=10 depth=28 dropout=0.3 dataset=./datasets/cifar100_whitened.t7 ./scripts/train_cifar.sh

This network achieves 20.0% error on CIFAR-100 in about a day on a single Titan X.

Multi-GPU is supported with nGPU=n parameter.

Other models

Additional models in this repo:

Implementation details

The code evolved from https://github.com/szagoruyko/cifar.torch. To reduce memory usage we use @fmassa's optimize-net, which automatically shares output and gradient tensors between modules. This keeps memory usage below 4 Gb even for our best networks. Also, it can generate network graph plots as the one for WRN-16-2 in the end of this page.

Acknowledgements

We thank startup company VisionLabs and Eugenio Culurciello for giving us access to their clusters, without them ImageNet experiments wouldn't be possible. We also thank Adam Lerer and Sam Gross for helpful discussions. Work supported by EC project FP7-ICT-611145 ROBOSPECT.

Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Implements a fake news detection program using classifiers.

Fake news detection Implements a fake news detection program using classifiers for Data Mining course at UoA. Description The project is the categoriz

Apostolos Karvelas 1 Jan 09, 2022
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022