[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Related tags

Deep LearningTRACE
Overview

Target Adaptive Context Aggregation for Video Scene Graph Generation

This is a PyTorch implementation for Target Adaptive Context Aggregation for Video Scene Graph Generation.

Requirements

  • PyTorch >= 1.2 (Mine 1.7.1 (CUDA 10.1))
  • torchvision >= 0.4 (Mine 0.8.2 (CUDA 10.1))
  • cython
  • matplotlib
  • numpy
  • scipy
  • opencv
  • pyyaml
  • packaging
  • pycocotools
  • tensorboardX
  • tqdm
  • pillow
  • scikit-image
  • h5py
  • yacs
  • ninja
  • overrides
  • mmcv

Compilation

Compile the CUDA code in the Detectron submodule and in the repo:

# ROOT=path/to/cloned/repository
cd $ROOT/Detectron_pytorch/lib
sh make.sh
cd $ROOT/lib
sh make.sh

Data Preparation

Download Datasets

Download links: VidVRD and AG.

Create directories for datasets. The directories for ./data/ should look like:

|-- data
|   |-- ag
|   |-- vidvrd
|   |-- obj_embed

where ag and vidvrd are for AG and VidVRD datasets, and obj_embed is for GloVe, the weights of pre-trained word vectors. The final directories for GloVe should look like:

|-- obj_embed
|   |-- glove.6B.200d.pt
|   |-- glove.6B.300d.pt
|   |-- glove.6B.300d.txt
|   |-- glove.6B.200d.txt
|   |-- glove.6B.100d.txt
|   |-- glove.6B.50d.txt
|   |-- glove.6B.300d

AG

Put the .mp4 files into ./data/ag/videos/. Put the annotations into ./data/ag/annotations/.

The final directories for VidVRD dataset should look like:

|-- ag
|   |-- annotations
|   |   |-- object_classes.txt
|   |   |-- ...
|   |-- videos
|   |   |-- ....mp4
|   |-- Charades_annotations

VidVRD

Put the .mp4 files into ./data/vidvrd/videos/. Put the three documents test, train and videos from the vidvrd-annoataions into ./data/vidvrd/annotations/.

Download precomputed precomputed features, model and detected relations from here (or here). Extract features and models into ./data/vidvrd/.

The final directories for VidVRD dataset should look like:

|-- vidvrd
|   |-- annotations
|   |   |-- test
|   |   |-- train
|   |   |-- videos
|   |   |-- predicate.txt
|   |   |-- object.txt
|   |   |-- ...
|   |-- features
|   |   |-- relation
|   |   |-- traj_cls
|   |   |-- traj_cls_gt
|   |-- models
|   |   |-- baseline_setting.json
|   |   |-- ...
|   |-- videos
|   |   |-- ILSVRC2015_train_00005003.mp4
|   |   |-- ...

Change the format of annotations for AG and VidVRD

# ROOT=path/to/cloned/repository
cd $ROOT

python tools/rename_ag.py

python tools/rename_vidvrd_anno.py

python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_gt_dense_more --rpath traj_cls_gt

python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_dense_more

Dump frames

Our ffmpeg version is 4.2.2-0york0~16.04 so using --ignore_editlist to avoid some frames being ignored. The jpg format saves the drive space.

Dump the annotated frames for AG and VidVRD.

python tools/dump_frames.py --ignore_editlist

python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --st_id 0

Dump the sampled high quality frames for AG and VidVRD.

python tools/dump_frames.py --frame_dir data/ag/sampled_frames --ignore_editlist --frames_store_type jpg --high_quality --sampled_frames

python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/sampled_frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --frames_store_type jpg --high_quality --sampled_frames --st_id 0

If you want to dump all frames with jpg format.

python tools/dump_frames.py --all_frames --frame_dir data/ag/all_frames --ignore_editlist --frames_store_type jpg

Get classes in json format for AG

# ROOT=path/to/cloned/repository
cd $ROOT
python txt2json.py

Get Charades train/test split for AG

Download Charades annotations and extract the annotations into ./data/ag/Charades_annotations/. Then run,

# ROOT=path/to/cloned/repository
cd $ROOT
python tools/dataset_split.py

Pretrained Models

Download model weights from here.

  • pretrained object detection
  • TRACE trained on VidVRD in detection_models/vidvrd/trained_rel
  • TRACE trained on AG in detection_models/ag/trained_rel

Performance

VidVrd, gt box

Method mAP [email protected] [email protected]
TRACE 30.6 19.3 24.6

gt_vidvrd

VidVrd, detected box

Method mAP [email protected] [email protected]
TRACE 16.3 9.2 11.2

det_vidvrd

AG, detected box

det_ag

Training Relationship Detection Models

VidVRD

# ROOT=path/to/cloned/repository
cd $ROOT

CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.025

AG

# ROOT=path/to/cloned/repository
cd $ROOT

CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.01

Evaluating Relationship Detection Models

VidVRD

evaluation for gt boxes

CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_gt_boxes_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101 --do_val --multi-gpu-testing

python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101 --output_dir Outputs/vidvrd_new101 --is_gt_traj

python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json

evaluation for detected boxes

CUDA_VISIBLE_DEVICES=1 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_pred_boxes_flip_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101_det2 --do_val

python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101_det2 --output_dir Outputs/vidvrd_new101_det2

python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101_det2/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json

AG

evaluation for detected boxes, Recalls (SGDet)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

evaluation for detected boxes, mAP_{rel}

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --eva_map --topk 50

evaluation for gt boxes, Recalls (SGCls)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

evaluation for gt boxes, gt object labels, Recalls (PredCls)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes --use_gt_labels

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

Hint

  • We apply the dilation convolution in I3D now, but observe a gridding effect in temporal feature maps.

Acknowledgements

This project is built on top of ContrastiveLosses4VRD, ActionGenome and VidVRD-helper. The corresponding papers are Graphical Contrastive Losses for Scene Graph Parsing, Action Genome: Actions as Compositions of Spatio-temporal Scene Graphs and Video Visual Relation Detection.

Citing

If you use this code in your research, please use the following BibTeX entry.

@inproceedings{Target_Adaptive_Context_Aggregation_for_Video_Scene_Graph_Generation,
  author    = {Yao Teng and
               Limin Wang and
               Zhifeng Li and
               Gangshan Wu},
  title     = {Target Adaptive Context Aggregation for Video Scene Graph Generation},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages     = {13688--13697},
  year      = {2021}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
3 Apr 20, 2022
Saeed Lotfi 28 Dec 12, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022