OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

Related tags

Deep LearningDrugOOD
Overview

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery

This is the official implementation of the DrugOOD project, this is the project page: https://drugood.github.io/

Environment Installation

You can install the conda environment using the drugood.yaml file provided:

!git clone https://github.com/tencent-ailab/DrugOOD.git
!cd DrugOOD
!conda env create --name drugood --file=drugood.yaml
!conda activate drugood

Then you can go to the demo at demo/demo.ipynb which gives a quick practice on how to use DrugOOD.

Demo

For a quick practice on using DrugOOD for dataset curation and OOD benchmarking, one can refer to the demo/demo.ipynb.

Dataset Curator

First, you need to generate the required DrugOOD dataset with our code. The dataset curator currently focusing on generating datasets from CHEMBL. It supports the following two tasks:

  • Ligand Based Affinity Prediction (LBAP).
  • Structure Based Affinity Prediction (SBAP).

For OOD domain annotations, it supports the following 5 choices.

  • Assay.
  • Scaffold.
  • Size.
  • Protein. (only for SBAP task)
  • Protein Family. (only for SBAP task)

For noise annotations, it supports the following three noise levels. Datasets with different noises are implemented by filters with different levels of strictness.

  • Core.
  • Refined.
  • General.

At the same time, due to the inconvenient conversion between different measurement type (E.g. IC50, EC50, Ki, Potency), one needs to specify the measurement type when generating the dataset.

How to Run and Reproduce the 96 Datasets?

Firstly, specifiy the path of CHEMBL database and the directory to save the data in the configuration file: configs/_base_/curators/lbap_defaults.py for LBAP task or configs/_base_/curators/sbap_defaults.py for SBAP task.
The source_root="YOUR_PATH/chembl_29_sqlite/chembl_29.db" means the path to the chembl29 sqllite file. The target_root="data/" specifies the folder to save the generated data.

Note that you can download the original chembl29 database with sqllite format from http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_29/chembl_29_sqlite.tar.gz.

The built-in configuration files are located in:
configs/curators/. Here we provide the 96 config files to reproduce the 96 datasets in our paper. Meanwhile, you can also customize your own datasets by changing the config files.

Run tools/curate.py to generate dataset. Here are some examples:

Generate datasets for the LBAP task, with assay as domain, core as noise level, IC50 as measurement type, LBAP as task type.:

python tools/curate.py --cfg configs/curators/lbap_core_ic50_assay.py

Generate datasets for the SBAP task, with protein as domain, refined as noise level, EC50 as measurement type, SBAP as task type.:

python tools/curate.py --cfg configs/curator/sbap_refined_ec50_protein.py

Benchmarking SOTA OOD Algorithms

Currently we support 6 different baseline algorithms:

  • ERM
  • IRM
  • GroupDro
  • Coral
  • MixUp
  • DANN

Meanwhile, we support various GNN backbones:

  • GIN
  • GCN
  • Weave
  • ShcNet
  • GAT
  • MGCN
  • NF
  • ATi-FPGNN
  • GTransformer

And different backbones for protein sequence modeling:

  • Bert
  • ProteinBert

How to Run?

Firstly, run the following command to install.

python setup.py develop

Run the LBAP task with ERM algorithm:

python tools/train.py configs/algorithms/erm/lbap_core_ec50_assay_erm.py

If you would like to run ERM on other datasets, change the corresponding options inside the above config file. For example, ann_file = 'data/lbap_core_ec50_assay.json' specifies the input data.

Similarly, run the SBAP task with ERM algorithm:

python tools/train.py configs/algorithms/erm/sbap_core_ec50_assay_erm.py

Reference

😄 If you find this repo is useful, please consider to cite our paper:

@ARTICLE{2022arXiv220109637J,
    author = {{Ji}, Yuanfeng and {Zhang}, Lu and {Wu}, Jiaxiang and {Wu}, Bingzhe and {Huang}, Long-Kai and {Xu}, Tingyang and {Rong}, Yu and {Li}, Lanqing and {Ren}, Jie and {Xue}, Ding and {Lai}, Houtim and {Xu}, Shaoyong and {Feng}, Jing and {Liu}, Wei and {Luo}, Ping and {Zhou}, Shuigeng and {Huang}, Junzhou and {Zhao}, Peilin and {Bian}, Yatao},
    title = "{DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations}",
    journal = {arXiv e-prints},
    keywords = {Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Quantitative Biology - Quantitative Methods},
    year = 2022,
    month = jan,
    eid = {arXiv:2201.09637},
    pages = {arXiv:2201.09637},
    archivePrefix = {arXiv},
    eprint = {2201.09637},
    primaryClass = {cs.LG}
}

Disclaimer

This is not an officially supported Tencent product.

Owner
Research repositories.
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022