HAN2HAN : Hangul Font Generation

Overview

Open In Colab

English |  한국어

HAN2HAN : Hangul Font Generation

Run Guide

git clone https://github.com/MINED30/HAN2HAN
cd HAN2HAN
mkdir targetimg
# Put your letter image to targetimg directory. The file name must be 
   
    .jpg
   
bash download.sh
python generate.py

Results

Letter from Seodaemun Prison

The above picture is an example of creating a font by extracting two sentences, "Are you doing well at school(그새 학교 잘다니냐)" and "I'm fine(나는 잘있다)," from the letter sent by Lee Yeon-ho at Seodaemun Prison. There are 13 letters in the extracted sentence, but 11 letters are actually usable by the model due to overlapping of 'Jal(잘)' and 'Da(다)'. Lee Yeon-ho's handwriting is characterized by a gentle flow and a clean feel. In the created 'Song of Cell No. 8 ', it can be seen that the characteristics are well lived. In particular, it can be seen that 'ㅎ' and 'ㅇ' are well utilized in the initial consonant, and the 'ㄹ' and 'ㄴ' consonants in the middle and final consonants are also well characterized. On the other hand, it is confirmed that the initial consonant 'ㄷ' is blurred and the font is cut off, and that 'ㅗ' is not well implemented because the font of '그' is unique.

Generation Hangul Font from Alphabet

What is surprising is that it captures the characteristics of the English alphabet well and puts Hangul fonts on it. I got the font from the website. The font above is snow piled on top of the font, and the font below is a horror style font. It is not perfectly created, but it follows the thickness of the font and the softness of the font well. In particular, it was very surprising to see the eyes gradually taking shape as the number of epochs increased in the font above.

Other fonts

The above 4 fonts are not used for training. It takes 10 characters of '나랏말싸미 듕귁에달아' and generates the rest of the Hunminjeongeum. You can see that it is generate so well that it is difficult for the human to distinguish it.

Architecture

Category Embedding

1 category embedder

In this project, the source font plays the role of 'Condition' that tells what type of character it is. Therefore, the source font should be able to change to any style and not lose the character of the characteristic. In the example picture above, it should be able to change to a different style of '밝', and at the same time, the characteristic of '밝' should not be lost. If a characteristic is lost, it cannot function as a Condition. By reconstructing the text whose style has changed in the source font, it is possible to better maintain the characteristic of the text. This structure was inspired by CycleGAN.

In general, the last embedding value of the encoder is used as the category embedding. However, this model uses all layers, not just the last embedding layer. That is, all values (red in the image) encoded in the source font are reflected when creating the font. For this purpose, the generator and encoder structures are designed identically.

Pix2Pix - Generator part

It is created in the same form as U-NET, but the difference is that category embedding is added. The encoded values are concatenated in the decoder part at the back stage, and the embedded values are also concatenated at this time. The concat values are listed below.
  1. Feature map from encoder
  2. The upconvolutional feature map in the previous step
  3. Category embedded feature map

Pix2Pix - GAN Part

The important thing is to be able to train with the font according to the embedding value of the source font, even if you put a different font. In the picture above, when the source font is '밝' regardless of '창' or any character, the generator should create '밝'. The discriminator simply classifies it as 0(True Image) or 1(Fake Image). The generator is trained to deceive the discriminator, and the discriminator is trained to pick out the real image. PatchGAN seems meaningless because the size of the image was small as 32x32. The pre-trained model learned 138 Naver nanum fonts, trained the generator 30 epochs, then trained the discriminator 30 epochs independently and run 30 epochs together.

In Finetuning, you have to create a lot of characters beyond just 10 characters. For example, when finetuning using 10 characters, each character is trained to make 1 character by putting 9 characters. That is, you can train 90 times (10*9 times) with 10 characters. L1 Loss was used as the loss function, and the results were good when the learning rate was assigned to 4e-5~5e-5 and trained for 100~200 epochs.

Character Embedding

For example, when 10 characters exist as input values, there are 10 cases to generate one character as a source font. It can be generated by selecting it randomly, but I hypothesize that it would be better if it was entered as the source font by inserting related characters. AutoEncoder was used to embed characters

Strength

  • A font is created with only a small number of characters, less than 10 characters.
  • Even if you put the alphabet, it generates Hangul font well, and as you can see in the example, it is possible to express the snowy font.
  • Easy to try with COLAB
  • The cost of designing fonts can be lowered.

Weakness

  1. Part of some characters disappears.
    • A small number of characters
    • If the format deviates a lot from the previously trained data, having it has a negative effect. (In the letter sent from Seodaemun Prison, it has better result without '그')
      • The first reason and the second reason conflict with each other. In conclusion, it is thought that data of 'consistent font' is necessary.
  2. The number of characters that can be created is limited to 2420 characters.
    • With only 2420 characters of 138 fonts, the number of characters that can be generated by training is limited to 2420 characters.
      • Better performance is expected if pretraining is performed with 11,172 characters and more fonts.
    • 2420 characters of 138 fonts are too small to cluster by character. If you train more characters, I think character embeddings will be more effective.
    • The more characters, the harder to category embed
      • it is more important to increase the number of fonts.
  3. Low quality by learning and generating images with a small size of 32x32
    • It is possible to generate high-quality fonts if trained to a larger size using more resources in the future.
  4. the effectiveness of character embedding is not proved
    • The results, although matching seem better, have not been proven numerically.
    • For now, model matches with cosine similarity, but it may be more effective if it is further advanced (Nural Net, etc.) in the future.
  5. discrepancy
    • The training is a digital font, but if it is created with an image such as a camera, discrepancy occurs.
    • Most of the designed fonts have a certain typeface, but a real person sometimes uses a typeface that is different from their own, causing discrepancy.
      • However, as in the example of 'A letter from Seodaemun Prison', if you 'font' the characters through preprocessing before generating them, there is no significant hindrance to the creation performance.
Owner
Changwoo Lee
Changwoo Lee
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022