Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Overview

Speech Emotion Analyzer

  • The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have with each other all the time. Nowadays personalization is something that is needed in all the things we experience everyday.

  • So why not have a emotion detector that will guage your emotions and in the future recommend you different things based on your mood. This can be used by multiple industries to offer different services like marketing company suggesting you to buy products based on your emotions, automotive industry can detect the persons emotions and adjust the speed of autonomous cars as required to avoid any collisions etc.

Analyzing audio signals

©Fabien_Ringeval_PhD_Thesis.

Datasets:

Made use of two different datasets:

  1. RAVDESS. This dataset includes around 1500 audio file input from 24 different actors. 12 male and 12 female where these actors record short audios in 8 different emotions i.e 1 = neutral, 2 = calm, 3 = happy, 4 = sad, 5 = angry, 6 = fearful, 7 = disgust, 8 = surprised.
    Each audio file is named in such a way that the 7th character is consistent with the different emotions that they represent.

  2. SAVEE. This dataset contains around 500 audio files recorded by 4 different male actors. The first two characters of the file name correspond to the different emotions that the potray.

Audio files:

Tested out the audio files by plotting out the waveform and a spectrogram to see the sample audio files.
Waveform

Spectrogram

Feature Extraction

The next step involves extracting the features from the audio files which will help our model learn between these audio files. For feature extraction we make use of the LibROSA library in python which is one of the libraries used for audio analysis.

  • Here there are some things to note. While extracting the features, all the audio files have been timed for 3 seconds to get equal number of features.
  • The sampling rate of each file is doubled keeping sampling frequency constant to get more features which will help classify the audio file when the size of dataset is small.

The extracted features looks as follows



These are array of values with lables appended to them.

Building Models

Since the project is a classification problem, Convolution Neural Network seems the obivious choice. We also built Multilayer perceptrons and Long Short Term Memory models but they under-performed with very low accuracies which couldn't pass the test while predicting the right emotions.

Building and tuning a model is a very time consuming process. The idea is to always start small without adding too many layers just for the sake of making it complex. After testing out with layers, the model which gave the max validation accuracy against test data was little more than 70%


Predictions

After tuning the model, tested it out by predicting the emotions for the test data. For a model with the given accuracy these are a sample of the actual vs predicted values.


Testing out with live voices.

In order to test out our model on voices that were completely different than what we have in our training and test data, we recorded our own voices with dfferent emotions and predicted the outcomes. You can see the results below: The audio contained a male voice which said "This coffee sucks" in a angry tone.



As you can see that the model has predicted the male voice and emotion very accurately in the image above.

NOTE: If you are using the model directly and want to decode the output ranging from 0 to 9 then the following list will help you.

0 - female_angry
1 - female_calm
2 - female_fearful
3 - female_happy
4 - female_sad
5 - male_angry
6 - male_calm
7 - male_fearful
8 - male_happy
9 - male_sad

Conclusion

Building the model was a challenging task as it involved lot of trail and error methods, tuning etc. The model is very well trained to distinguish between male and female voices and it distinguishes with 100% accuracy. The model was tuned to detect emotions with more than 70% accuracy. Accuracy can be increased by including more audio files for training.

Owner
Mitesh Puthran
Data Scientist trying to make sense.
Mitesh Puthran
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021