In-place Parallel Super Scalar Samplesort (IPS⁴o)

Related tags

Deep Learningips4o
Overview

In-place Parallel Super Scalar Samplesort (IPS⁴o)

This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Shared-memory) Sorting Algorithms, which contains an in-depth description of its inner workings, as well as an extensive experimental performance evaluation. Here's the abstract:

We present new sequential and parallel sorting algorithms that now represent the fastest known techniques for a wide range of input sizes, input distributions, data types, and machines. Somewhat surprisingly, part of the speed advantage is due to the additional feature of the algorithms to work in-place, i.e., they do not need a significant amount of space beyond the input array. Previously, the in-place feature often implied performance penalties. Our main algorithmic contribution is a blockwise approach to in-place data distribution that is provably cache-efficient. We also parallelize this approach taking dynamic load balancing and memory locality into account.

Our new comparison-based algorithm In-place Superscalar Samplesort (IPS⁴o), combines this technique with branchless decision trees. By taking cases with many equal elements into account and by adapting the distribution degree dynamically, we obtain a highly robust algorithm that outperforms the best previous in-place parallel comparison-based sorting algorithms by almost a factor of three. That algorithm also outperforms the best comparison-based competitors regardless of whether we consider in-place or not in-place, parallel or sequential settings.

Another surprising result is that IPS⁴o even outperforms the best (in-place or not in-place) integer sorting algorithms in a wide range of situations. In many of the remaining cases (often involving near-uniform input distributions, small keys, or a sequential setting), our new In-place Parallel Super Scalar Radix Sort (IPS²Ra) turns out to be the best algorithm.

Claims to have the -- in some sense -- "best" sorting algorithm can be found in many papers which cannot all be true. Therefore, we base our conclusions on an extensive experimental study involving a large part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7 orders of magnitude. This confirms the claims made about the robust performance of our algorithms while revealing major performance problems in many competitors outside the concrete set of measurements reported in the associated publications. This is particularly true for integer sorting algorithms giving one reason to prefer comparison-based algorithms for robust general-purpose sorting.

An initial version of IPS⁴o has been described in our publication on the 25th Annual European Symposium on Algorithms.

Usage

Clone this repository and check out its submodule

git clone --recurse-submodules https://github.com/ips4o/ips4o.git

or use the following commands instead if you want to include this repository as a submodule:

git submodule add https://github.com/ips4o/ips4o.git
git submodule update --recursive --init

IPS⁴o provides a CMake library for simple usage:

add_subdirectory(<path-to-the-ips4o-repository>)
target_link_libraries(<your-target> PRIVATE ips4o)

A minimal working example:

#include "ips4o.hpp"

// sort sequentially
ips4o::sort(begin, end[, comparator]);

// sort in parallel (uses OpenMP if available, std::thread otherwise)
ips4o::parallel::sort(begin, end[, comparator]);

The parallel version of IPS⁴o requires 16-byte atomic compare-and-exchange instructions to run the fastest. Most CPUs and compilers support 16-byte compare-and-exchange instructions nowadays. If the CPU in question does so, IPS⁴o uses 16-byte compare-and-exchange instructions when you set your CPU correctly (e.g., -march=native) or when you enable the instructions explicitly (-mcx16). In this case, you also have to link against GCC's libatomic (-latomic). Otherwise, we emulate some 16-byte compare-and-exchange instructions with locks which may slightly mitigate the performance of IPS⁴o.

If you use the CMake example shown above, we automatically optimize IPS⁴o for the native CPU (e.g., -march=native). You can disable the CMake property IPS4O_OPTIMIZE_FOR_NATIVE to avoid native optimization and you can enable the CMake property IPS4O_USE_MCX16 if you compile with GCC or Clang to enable 16-byte compare-and-exchange instructions explicitly.

IPS⁴o uses C++ threads if not specified otherwise. If you prefer OpenMP threads, you need to enable OpenMP threads, e.g., enable the CMake property IPS4O_USE_OPENMP or add OpenMP to your target. If you enable the CMake property DISABLE_IPS4O_PARALLEL, most of the parallel code will not be compiled and no parallel libraries will be linked. Otherwise, CMake automatically enables C++ threads (e.g., -pthread) and links against TBB and GCC's libatomic. (Only when you compile your code for 16-byte compare-and-exchange instructions you need libatomic.) Thus, you need the Thread Building Blocks (TBB) library to compile and execute the parallel version of IPS⁴o. We search for TBB with find_package(TBB REQUIRED). If you want to execute IPS⁴o in parallel but your TBB library is not accessible via find_package(TBB REQUIRED), you can still compile IPS⁴o with parallel support. Just enable the CMake property DISABLE_IPS4O_PARALLEL, enable C++ threads for your own target and link your own target against your TBB library (and also link your target against libatomic if you want 16-byte atomic compare-and-exchange instruction support).

If you do not set a CMake build type, we use the build type Release which disables debugging (e.g., -DNDEBUG) and enables optimizations (e.g., -O3).

Currently, the code does not compile on Windows.

Licensing

IPS⁴o is free software provided under the BSD 2-Clause License described in the LICENSE file. If you use this implementation of IPS⁴o in an academic setting please cite the paper Engineering In-place (Shared-memory) Sorting Algorithms using the BibTeX entry

@misc{axtmann2020engineering,
  title =	 {Engineering In-place (Shared-memory) Sorting Algorithms},
  author =	 {Michael Axtmann and Sascha Witt and Daniel Ferizovic and Peter Sanders},
  howpublished = {Computing Research Repository (CoRR)},
  year =	 {Sept. 2020},
  archivePrefix ={arXiv},
  eprint =	 {2009.13569},
}
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022