In-place Parallel Super Scalar Samplesort (IPS⁴o)

Related tags

Deep Learningips4o
Overview

In-place Parallel Super Scalar Samplesort (IPS⁴o)

This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Shared-memory) Sorting Algorithms, which contains an in-depth description of its inner workings, as well as an extensive experimental performance evaluation. Here's the abstract:

We present new sequential and parallel sorting algorithms that now represent the fastest known techniques for a wide range of input sizes, input distributions, data types, and machines. Somewhat surprisingly, part of the speed advantage is due to the additional feature of the algorithms to work in-place, i.e., they do not need a significant amount of space beyond the input array. Previously, the in-place feature often implied performance penalties. Our main algorithmic contribution is a blockwise approach to in-place data distribution that is provably cache-efficient. We also parallelize this approach taking dynamic load balancing and memory locality into account.

Our new comparison-based algorithm In-place Superscalar Samplesort (IPS⁴o), combines this technique with branchless decision trees. By taking cases with many equal elements into account and by adapting the distribution degree dynamically, we obtain a highly robust algorithm that outperforms the best previous in-place parallel comparison-based sorting algorithms by almost a factor of three. That algorithm also outperforms the best comparison-based competitors regardless of whether we consider in-place or not in-place, parallel or sequential settings.

Another surprising result is that IPS⁴o even outperforms the best (in-place or not in-place) integer sorting algorithms in a wide range of situations. In many of the remaining cases (often involving near-uniform input distributions, small keys, or a sequential setting), our new In-place Parallel Super Scalar Radix Sort (IPS²Ra) turns out to be the best algorithm.

Claims to have the -- in some sense -- "best" sorting algorithm can be found in many papers which cannot all be true. Therefore, we base our conclusions on an extensive experimental study involving a large part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7 orders of magnitude. This confirms the claims made about the robust performance of our algorithms while revealing major performance problems in many competitors outside the concrete set of measurements reported in the associated publications. This is particularly true for integer sorting algorithms giving one reason to prefer comparison-based algorithms for robust general-purpose sorting.

An initial version of IPS⁴o has been described in our publication on the 25th Annual European Symposium on Algorithms.

Usage

Clone this repository and check out its submodule

git clone --recurse-submodules https://github.com/ips4o/ips4o.git

or use the following commands instead if you want to include this repository as a submodule:

git submodule add https://github.com/ips4o/ips4o.git
git submodule update --recursive --init

IPS⁴o provides a CMake library for simple usage:

add_subdirectory(<path-to-the-ips4o-repository>)
target_link_libraries(<your-target> PRIVATE ips4o)

A minimal working example:

#include "ips4o.hpp"

// sort sequentially
ips4o::sort(begin, end[, comparator]);

// sort in parallel (uses OpenMP if available, std::thread otherwise)
ips4o::parallel::sort(begin, end[, comparator]);

The parallel version of IPS⁴o requires 16-byte atomic compare-and-exchange instructions to run the fastest. Most CPUs and compilers support 16-byte compare-and-exchange instructions nowadays. If the CPU in question does so, IPS⁴o uses 16-byte compare-and-exchange instructions when you set your CPU correctly (e.g., -march=native) or when you enable the instructions explicitly (-mcx16). In this case, you also have to link against GCC's libatomic (-latomic). Otherwise, we emulate some 16-byte compare-and-exchange instructions with locks which may slightly mitigate the performance of IPS⁴o.

If you use the CMake example shown above, we automatically optimize IPS⁴o for the native CPU (e.g., -march=native). You can disable the CMake property IPS4O_OPTIMIZE_FOR_NATIVE to avoid native optimization and you can enable the CMake property IPS4O_USE_MCX16 if you compile with GCC or Clang to enable 16-byte compare-and-exchange instructions explicitly.

IPS⁴o uses C++ threads if not specified otherwise. If you prefer OpenMP threads, you need to enable OpenMP threads, e.g., enable the CMake property IPS4O_USE_OPENMP or add OpenMP to your target. If you enable the CMake property DISABLE_IPS4O_PARALLEL, most of the parallel code will not be compiled and no parallel libraries will be linked. Otherwise, CMake automatically enables C++ threads (e.g., -pthread) and links against TBB and GCC's libatomic. (Only when you compile your code for 16-byte compare-and-exchange instructions you need libatomic.) Thus, you need the Thread Building Blocks (TBB) library to compile and execute the parallel version of IPS⁴o. We search for TBB with find_package(TBB REQUIRED). If you want to execute IPS⁴o in parallel but your TBB library is not accessible via find_package(TBB REQUIRED), you can still compile IPS⁴o with parallel support. Just enable the CMake property DISABLE_IPS4O_PARALLEL, enable C++ threads for your own target and link your own target against your TBB library (and also link your target against libatomic if you want 16-byte atomic compare-and-exchange instruction support).

If you do not set a CMake build type, we use the build type Release which disables debugging (e.g., -DNDEBUG) and enables optimizations (e.g., -O3).

Currently, the code does not compile on Windows.

Licensing

IPS⁴o is free software provided under the BSD 2-Clause License described in the LICENSE file. If you use this implementation of IPS⁴o in an academic setting please cite the paper Engineering In-place (Shared-memory) Sorting Algorithms using the BibTeX entry

@misc{axtmann2020engineering,
  title =	 {Engineering In-place (Shared-memory) Sorting Algorithms},
  author =	 {Michael Axtmann and Sascha Witt and Daniel Ferizovic and Peter Sanders},
  howpublished = {Computing Research Repository (CoRR)},
  year =	 {Sept. 2020},
  archivePrefix ={arXiv},
  eprint =	 {2009.13569},
}
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022