Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Related tags

Deep LearningDMMN
Overview

Deep Multi-Magnification Network

This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi-Magnification Network automatically segments multiple tissue subtypes by a set of patches from multiple magnifications in histopathology whole slide images.

Prerequisites

  • Python 3.6.7
  • Pytorch 1.3.1
  • OpenSlide 1.1.1
  • Albumentations

Training

The main training code is training.py. The trained segmentation model will be saved under runs/ by default.

In addition to config, you may need to update the following variables before running training.py:

  • n_classes: the number of tissue subtype classes + 1
  • train_file and val_file: the list of training and validation patches
    • Slide patches must be stored as /path/slide_tiles/patch_1.jpg, /path/slide_tiles/patch_2.jpg, ... /path/slide_tiles/patch_N.jpg
    • The coresponding label patches must be stored as /path/label_tiles/patch_1.png, /path/label_tiles/patch_2.png, ... /path/label_tiles/patch_N.png
    • train_file and val_file must be formatted as
     /path/,patch_1
     /path/,patch_2
     ...
     /path/,patch_N
    
  • d: the number of pixels of each class in the training set for weighted cross entropy loss function

Note that pixels labeled as class 0 are unannotated and will not contribute to the training.

Inference

The main inference codes are slidereader_coords.py and inference.py. You first need to run slidereader_coords.py to generate patch coordinates to be segmented in input whole slide images. After generating patch coordinates, you may run inference.py to generate segmentation predictions of input whole slide images. The segmentation predictions will be saved under imgs/ by default.

You may need to update the following variables before running slidereader_coords.py:

  • slides_to_read: the list of whole slide images
  • coord_file: an output file listing all patch coordinates

In adition to model_path and out_path, you may need to update the following variables before running inference.py:

  • n_classes: the number of tissue subtype classes + 1
  • test file: the list of patch coordinates generated by slidereader_coords.py
  • data_path: the path where whole slide images are located

Please download the pretrained breast model here.

Note that segmentation predictions will be generated in 4-bit BMP format. The size limit for 4-bit BMP files is 232 pixels.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. (c) MSK

Acknowledgments

Reference

If you find our work useful, please cite our paper:

@article{ho2021,
  title={Deep Multi-Magnification Networks for multi-class breast cancer image segmentation},
  author={Ho, David Joon and Yarlagadda, Dig V.K. and D'Alfonso, Timothy M. and Hanna, Matthew G. and Grabenstetter, Anne and Ntiamoah, Peter and Brogi, Edi and Tan, Lee K. and Fuchs, Thomas J.},
  journal={Computerized Medical Imaging and Graphics},
  year={2021},
  volume={88},
  pages={101866}
}
Owner
Computational Pathology
Computational Pathology
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022