Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Related tags

Deep LearningDMMN
Overview

Deep Multi-Magnification Network

This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi-Magnification Network automatically segments multiple tissue subtypes by a set of patches from multiple magnifications in histopathology whole slide images.

Prerequisites

  • Python 3.6.7
  • Pytorch 1.3.1
  • OpenSlide 1.1.1
  • Albumentations

Training

The main training code is training.py. The trained segmentation model will be saved under runs/ by default.

In addition to config, you may need to update the following variables before running training.py:

  • n_classes: the number of tissue subtype classes + 1
  • train_file and val_file: the list of training and validation patches
    • Slide patches must be stored as /path/slide_tiles/patch_1.jpg, /path/slide_tiles/patch_2.jpg, ... /path/slide_tiles/patch_N.jpg
    • The coresponding label patches must be stored as /path/label_tiles/patch_1.png, /path/label_tiles/patch_2.png, ... /path/label_tiles/patch_N.png
    • train_file and val_file must be formatted as
     /path/,patch_1
     /path/,patch_2
     ...
     /path/,patch_N
    
  • d: the number of pixels of each class in the training set for weighted cross entropy loss function

Note that pixels labeled as class 0 are unannotated and will not contribute to the training.

Inference

The main inference codes are slidereader_coords.py and inference.py. You first need to run slidereader_coords.py to generate patch coordinates to be segmented in input whole slide images. After generating patch coordinates, you may run inference.py to generate segmentation predictions of input whole slide images. The segmentation predictions will be saved under imgs/ by default.

You may need to update the following variables before running slidereader_coords.py:

  • slides_to_read: the list of whole slide images
  • coord_file: an output file listing all patch coordinates

In adition to model_path and out_path, you may need to update the following variables before running inference.py:

  • n_classes: the number of tissue subtype classes + 1
  • test file: the list of patch coordinates generated by slidereader_coords.py
  • data_path: the path where whole slide images are located

Please download the pretrained breast model here.

Note that segmentation predictions will be generated in 4-bit BMP format. The size limit for 4-bit BMP files is 232 pixels.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. (c) MSK

Acknowledgments

Reference

If you find our work useful, please cite our paper:

@article{ho2021,
  title={Deep Multi-Magnification Networks for multi-class breast cancer image segmentation},
  author={Ho, David Joon and Yarlagadda, Dig V.K. and D'Alfonso, Timothy M. and Hanna, Matthew G. and Grabenstetter, Anne and Ntiamoah, Peter and Brogi, Edi and Tan, Lee K. and Fuchs, Thomas J.},
  journal={Computerized Medical Imaging and Graphics},
  year={2021},
  volume={88},
  pages={101866}
}
Owner
Computational Pathology
Computational Pathology
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022