PyTorch implementation for paper Neural Marching Cubes.

Related tags

Deep LearningNMC
Overview

NMC

PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang.

Paper | Supplementary Material (to be updated)

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021nmc,
  title={Neural Marching Cubes},
  author={Zhiqin Chen and Hao Zhang},
  journal={arXiv preprint arXiv:2106.11272},
  year={2021}
}

Notice

We have implemented Neural Dual Contouring (NDC). NDC is based on Dual Contouring and thus much easier to implement than NMC. It produces less triangles and vertices (1/8 of NMC, 1/4 of NMC-lite, ≈MC33), with better triangle quality. It runs faster than NMC because it has significantly less values to predict for each cube (1 bool 3 float for NDC, v.s. 5 bool 51 float for NMC), therefore the network size could be significantly reduced. Yet, it cannot reconstruct some cube cases, and may introduce non-manifold edges.

Requirements

  • Python 3 with numpy, h5py, scipy and Cython
  • PyTorch 1.8 (other versions may also work)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preprocessing.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Note that the weights are divided into six folders:

Folder Method Input
1_NMC_sdf_unit_scale NMC SDF grid, each grid cell must have unit length
2_NMC_lite_sdf_unit_scale NMC-lite SDF grid, each grid cell must have unit length
3_NMC_voxel NMC Voxel grid, 1=occupied, 0=otherwise
4_NMC_lite_voxel NMC-lite Voxel grid, 1=occupied, 0=otherwise
5_NMC_sdf_scale_0.001-2 NMC SDF grid, each grid cell could have length from 0.001 to 2.0
6_NMC_lite_sdf_scale_0.001-2 NMC-lite SDF grid, each grid cell could have length from 0.001 to 2.0
This GitHub repo NMC = 5_NMC_sdf_scale_0.001-2

Training and Testing

Before training, please replace LUT_tess.npz (the Look-Up Table for cube tessellations) in the main directory with the corresponding version of your training target (either NMC or NMC-lite). Both versions of LUT_tess.npz can be found at tessellation.

To train/test NMC with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type sdf

To train/test NMC-lite with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type sdf

To train/test NMC with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type voxel

To train/test NMC-lite with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type voxel

To evaluate Chamfer Distance, Normal Consistency, F-score, Edge Chamfer Distance, Edge F-score, you need to have the ground truth normalized obj files ready in a folder objs. See data_preprocessing for how to prepare the obj files. Then you can run:

python eval_cd_nc_f1_ecd_ef1.py

To count the number of triangles and vertices, run:

python eval_v_t_count.py

If you want to test on your own dataset, please refer to data_preprocessing for how to convert obj files into SDF grids and voxel grids. If your data are not meshes (say your data are already voxel grids), you can modify the code in utils.py to read your own data format. Check function read_data_input_only in utils.py for an example.

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022