Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

Overview

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification

Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020) DOI

Changelog

  • 2020/09/14 update the code: CUB-200-2011_ResNet18.py Training with ResNet18 (TRAINED FROM SCRATCH).
  • 2020/04/19 add the hyper-parameter fine-tune results.
  • 2020/04/18 clean the code for better understanding.

Dataset

CUB-200-2011

Requirements

  • python 3.6
  • PyTorch 1.2.0
  • torchvision

Training

  • Download datasets
  • Train: python CUB-200-2011.py, the alpha and beta are the hyper-parameters of the MC-Loss
  • Description : PyTorch CUB-200-2011 Training with VGG16 (TRAINED FROM SCRATCH).

Hyper-parameter

Loss = ce_loss + alpha_1 * L_dis + beta_1 * L_div
Hyper-parameter_1 Hyper-parameter_2 The figure is plot by NNI.

Other versions

Other unofficial implements can be found in the following:

  • Kurumi233: This repo integrate the MC-Loss into a class. code
  • darcula1993: This repo implement the tf version of the MC-Loss. code

Citation

If you find this paper useful in your research, please consider citing:

@ARTICLE{9005389, 
author={D. {Chang} and Y. {Ding} and J. {Xie} and A. K. {Bhunia} and X. {Li} and Z. {Ma} and M. {Wu} and J. {Guo} and Y. {Song}}, 
journal={IEEE Transactions on Image Processing}, 
title={The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification}, 
year={2020}, volume={29}, number={}, pages={4683-4695}, 
doi={10.1109/TIP.2020.2973812}, 
ISSN={1941-0042}, 
month={},} 

Contact

Thanks for your attention! If you have any suggestion or question, you can leave a message here or contact us directly:

Owner
PRIS-CV: Computer Vision Group
CV Group , PRIS lab, School of Artificial Intelligence, BUPT
PRIS-CV: Computer Vision Group
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022