Tom-the-AI - A compound artificial intelligence software for Linux systems.

Overview

Tom the AI (version 0.82)

WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days.

Tom is an open source AI desktop assistant for Linux systems, built using a series of independent response modules to generate replies to any input.

Tom uses natural language processing to determine which response module is best suited to generate a response for each input, thus avoiding the need for precise syntax.

Tom the AI

By Analogy

Tom the AI is designed as a Linux alternative to software such as Apple's Siri, or Microsoft's Cortana.

Set Up

Step 1 - Update repositories:

Update apt package repositories using sudo apt update to ensure that the apt package manager has access to the latest versions of the below dependencies.

Step 2 - Install APT dependencies:

First, install python by running sudo apt install python3.9 in a terminal. Tom is tested on python 3.9, but any newer version should (probably) also work just fine.

Next, install the latest version of VLC Media player using sudo apt install vlc.

Step 3 - Download Tom:

Download Tom by cloning the GitHub repository into your home folder using git clone https://github.com/Mblizzard/Tom-the-AI.

Step 4 - Install Python dependencies:

Open a terminal inside Tom's application folder, or navigate using cd ~/Tom-the-AI/. Now run sudo pip3 install requirements.txt. Some systems may use pip in place of pip3.

Next, we need to download the required NLTK libraries by running the following code in a python shell:

>>> import nltk
>>> nltk.download('all')

Step 5 - Running Tom:

Go ahead and run python3.9 ~/Tom-the-AI/tom.py. Tom will boot up, and after a minute or so of loading, you'll be ready to go! If you feel inclined, go ahead and make a desktop launcher of this command, link Tom into your Application Menu, or create a dock shortcut.

Mission

The mission of Tom is to provide an open source compound AI for which anyone can program and contribute response modules, expanding Tom's capabilities to create a useful and entertaining artificial intelligence software.

Examples

Tom generates outputs to any input by using natural language processing to determine the most suitable response module from which to source the reply.

Give Tom natural language input, either via voice recognition or text input, for instance Hey Tom, what is petrichor?, and he'll respond in the most appropriate way. Note that the 'Hey Tom' activation phrase is only required of voice inputs.

The following is a non-exhaustive list of things you can do:

Hey Tom, I'm in an optimistic mood. I'm not sure if this is a good thing or not. Emotions (Using sentiment analysis + NLTK chatbots): ~> Hey Tom, you are a brilliant individual! I am but one, you are but one more. ~> Hey Tom, thou art a fool. Become more interesting before I die of fatal boredom. Fact Memory & Recall: ~> Hey Tom, the answer to life, the universe, and everything is 42. Ok. ~> Hey Tom, what is the answer to life, the universe, and everything?. The answer to life, the universe, and everything is 42. Playing music (From device or web, includes UI controls for the former): ~> Hey Tom, play up the shard. Playing /home/murray/Music/Dr Who/Up The Shard.webm. ~> Hey Tom, stop the music. Media stopped. *NOTE: File names do not have to match exactly.* ~> Hey Tom, open my English essay. Alright. *NOTE: File names do not have to match exactly.* Opening websites: ~> Hey Tom, open Reddit. Alright. Jokes (From PyJokes): ~> Hey Tom, tell me a joke. I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane. Trivia: ~> Hey Tom, ask me a trivia question. Question: What is "Sealed crustless sandwich"? 1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate! 2) I got a fever, and the only prescription... is more cowbell! 3) The only nuclear reactor in a 17th-century building. 4) A patented peanut butter and jelly sandwich. ~> 4. Correct! Colossal Cave Adventure (Willie Crowther's ADVENT-350): ~> Hey Tom, let's go on an adventure! Welcome to adventure!! would you like instructions? Fun facts: ~> Hey Tom, make me smarter. Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat. Dice Rolls (great for D&D): ~> Hey Tom, roll me a d20. I rolled a 14. Word generation (great for Articulate) ~> Hey Tom, give me a random action word. Your word is 'winning'. Complex Mathematics (using SymPy): ~> Hey Tom, integrate (tan(x))^1/2 ∫f(x) = -ln(cos(x))/2 + c Code generation (using howdoi): ~> Hey Tom, write a hello world script in C++. #include <\iostream> int main() { std::cout << "Hello World!" << std::endl; return 0; } Most of Betty's functionality (From https://github.com/pickhardt/betty): ~> Hey Tom, what time is it? Running date +"%r (%T)" ... 02:34:46 PM (14:34:46). ~> Hey Tom, what day is it? Running date +"%A" ... Saturday. ~> Hey Tom, whats my username? Running whoami ... murray ~> Hey Tom, what is my ip address? Wlo1: flags=4163 mtu 1500 inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255 inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20 ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet) RX packets 401121 bytes 523184185 (523.1 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 235650 bytes 23471151 (23.4 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.">
Objective Response (From anywhere on the internet):
~> Hey Tom, what is petrichor?
According to en.wikipedia.org... Petrichor is the earthy scent produced when rain falls on dry soil. The word is constructed from the Greek petra, "rock", or petros, "stone", and ichor, the fluid that flows in the veins of the gods in Greek mythology.

Subjective Response (From Cleverbot):
~> Hey Tom, I'm in an optimistic mood.
I'm not sure if this is a good thing or not.

Emotions (Using sentiment analysis + NLTK chatbots):
~> Hey Tom, you are a brilliant individual!
I am but one, you are but one more.
~> Hey Tom, thou art a fool.
Become more interesting before I die of fatal boredom.

Fact Memory & Recall:
~> Hey Tom, the answer to life, the universe, and everything is 42.
Ok.
~> Hey Tom, what is the answer to life, the universe, and everything?.
The answer to life, the universe, and everything is 42.

Playing music (From device or web, includes UI controls for the former):
~> Hey Tom, play up the shard.
Playing /home/murray/Music/Dr Who/Up The Shard.webm.
~> Hey Tom, stop the music.
Media stopped.
*NOTE: File names do not have to match exactly.*

~> Hey Tom, open my English essay.
Alright.
*NOTE: File names do not have to match exactly.*

Opening websites:
~> Hey Tom, open Reddit.
Alright.

Jokes (From PyJokes):
~> Hey Tom, tell me a joke.
I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane.

Trivia:
~> Hey Tom, ask me a trivia question.
Question: What is "Sealed crustless sandwich"?
1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate!
2) I got a fever, and the only prescription... is more cowbell!
3) The only nuclear reactor in a 17th-century building.
4) A patented peanut butter and jelly sandwich.
~> 4.
Correct!

Colossal Cave Adventure (Willie Crowther's ADVENT-350):
~> Hey Tom, let's go on an adventure!
Welcome to adventure!! would you like instructions?

Fun facts:
~> Hey Tom, make me smarter.
Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat.

Dice Rolls (great for D&D):
~> Hey Tom, roll me a d20.
I rolled a 14.

Word generation (great for Articulate)
~> Hey Tom, give me a random action word.
Your word is 'winning'.

Complex Mathematics (using SymPy):
~> Hey Tom, integrate (tan(x))^1/2
∫f(x) = -ln(cos(x))/2 + c

Code generation (using howdoi):
~> Hey Tom, write a hello world script in C++.
#include <\iostream>
int main()
{
std::cout << "Hello World!" << std::endl;
return 0;
}

Most of Betty's functionality (From https://github.com/pickhardt/betty):
~> Hey Tom, what time is it?
Running date +"%r (%T)" ...
02:34:46 PM (14:34:46).
~> Hey Tom, what day is it?
Running date +"%A" ...
Saturday.
~> Hey Tom, whats my username?
Running whoami ...
murray
~> Hey Tom, what is my ip address?
Wlo1: flags=4163
    
      mtu 1500
    inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255
    inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20
     
    ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet)
    RX packets 401121 bytes 523184185 (523.1 MB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 235650 bytes 23471151 (23.4 MB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.

    

This is a fair representation of Tom's capabilities as they currently stand. See the following section on contributing for a guide of how to create your own response modules for Tom, and expand upon the above abilities.

Contributing

How to write a custom response module for Tom:

Step 1 - Understanding how Tom will treat your module:

Tom is programmed in Python. Response modules are imported into Tom using the python import statement, and the response is retrieved from the module using output = .respond( ) . The output is then returned to the user.

Step 2 - Programming the response module:

Go ahead and program your response. Your script should have a main function def respond(inp):, where inp is the user input parameter that will be passed to your function by Tom. Your function should provide it's output through a return statement (NOT a print() statement).

Step 3 - Testing your module:

Paste the following bit of code at the end of your python script, then run your program:

")))">
if __name__ == "__main__":
    while True:
        print(respond(input("~> ")))

If this works as expected, and you can type inputs on the ~> prompts and receive your output printed in the console, then continue to step 4.

Step 4 - Relative imports:

Rename your main response script to __init__.py, and make sure it's at the first level of your project folder (not nested in other folders). Next, rename the folder containing your script to the name of your module (no white-space or special characters). Now, if you are importing any functions from other scripts (does not include dependencies installed through pip), you will need to change the import statement by placing a '.' in front of the location. For example, from myOtherScript import customFunction becomes from .myOtherScript import customFunction, but import requests would remain unchanged.

Step 5 - Dependencies:

If your response module requires python packages from PyPi, make sure it includes a requirements.txt file. Any dependencies not available from PyPi should bundled with project, located in the project folder alongside __init__.py.

Step 6 - Using your module:

Paste the folder containing your response module into Tom's /responses directory. You will then need to activate the response module within Tom's modules interface, or by manually adding the name of your module to responseOrder.txt.

Step 7 - Creating a pull request:

If you feel inclined to share your module with the world, go ahead and create a pull request for your module on Tom's GitHub repository (https://github.com/Mblizzard/Tom-the-AI).

Planned Features

New response modules & capabilities to look forward to in future versions of Tom:

  • Timers & stopwatch capabilities.
  • Ability execute terminal commands.
  • Automated module installation.
  • Releases and updates available on the Ubuntu apt repositories.

Features I'm not currently planning to include in Tom, but that I'll consider adding if enough people are interested:

  • Windows support.

Versioning

Releases will follow a semantic versioning format:

. .

For more information on SemVer, visit http://semver.org/.

License

Tom the AI: A compound AI for Linux systems.
Copyright (C) 2021  Murray Jones

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see 
   .
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022