Leaderboard and Visualization for RLCard

Overview

RLCard Showdown

This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to help understand the performance of the agents. It includes a replay module, where you can analyze the replays, and a PvE module, where you can play with the AI interactively. Currently, we only support Leduc Hold'em and Dou Dizhu. The frontend is developed with React. The backend is based on Django and Flask. Have fun!

Cite this work

Zha, Daochen, et al. "RLCard: A Platform for Reinforcement Learning in Card Games." IJCAI. 2020.

@inproceedings{zha2020rlcard,
  title={RLCard: A Platform for Reinforcement Learning in Card Games},
  author={Zha, Daochen and Lai, Kwei-Herng and Huang, Songyi and Cao, Yuanpu and Reddy, Keerthana and Vargas, Juan and Nguyen, Alex and Wei, Ruzhe and Guo, Junyu and Hu, Xia},
  booktitle={IJCAI},
  year={2020}
}

Installation

RLCard-Showdown has separated frontend and backend. The frontend is built with React and the backend is based on Django and Flask.

Prerequisite

To set up the frontend, you should make sure you have Node.js and NPM installed. Normally you just need to manually install Node.js, and the NPM package would be automatically installed together with Node.js for you. Please refer to its official website for installation of Node.js.

You can run the following commands to verify the installation

node -v
npm -v

For backend, make sure that you have Python 3.6+ and pip installed.

Install Frontend and Backend

The frontend can be installed with the help of NPM:

git clone -b master --single-branch --depth=1 https://github.com/datamllab/rlcard-showdown.git
cd rlcard-showdown
npm install

The backend of leaderboard can be installed with

pip3 install -r requirements.txt
cd server
python3 manage.py migrate
cd ..

Run RLCard-Showdown

  1. Launch the backend of leaderboard with
cd server
python3 manage.py runserver
  1. Download the pre-trained models in Google Drive or 百度网盘 提取码: qh6s. Extract it in pve_server/pretrained.

In a new terminal, start the PvE server (i.e., human vs AI) of DouZero with

cd pve_server
python3 run_douzero.py

Alternatively, you can start the PvE server interfaced with RLCard:

cd pve_server
python3 run_dmc.py

They are conceptually the same with minor differences in state representation and training time of the pre-trained models (DouZero is fully trained with more than a month, while DMC in RLCard is only trained for hours).

  1. Run the following command in another new terminal under the project folder to start frontend:
npm start

You can view leaderboard at http://127.0.0.1:3000/ and PvE demo of Dou Dizhu at http://127.0.0.1:3000/pve/doudizhu-demo. The backend of leaderboard will run in http://127.0.0.1:8000/. The PvE backend will run in http://127.0.0.1:5000/.

Demos

leaderboards upload doudizhu-replay leduc-replay

Contact Us

If you have any questions or feedback, feel free to drop an email to Songyi Huang for the frontend or Daochen Zha for backend.

Acknowledgements

We would like to thank JJ World Network Technology Co., LTD for the generous support, Chieh-An Tsai for user interface design, and Lei Pan for the help in visualizations.

Owner
Data Analytics Lab at Texas A&M University
We develop automated and interpretable machine learning algorithms/systems with understanding of their theoretical properties.
Data Analytics Lab at Texas A&M University
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022