This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

Related tags

Deep LearningFACT
Overview

FACT

This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

To cite, please use:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Qinwei and Zhang, Ruipeng and Zhang, Ya and Wang, Yanfeng and Tian, Qi},
    title     = {A Fourier-Based Framework for Domain Generalization},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {14383-14392}
}

Requirements

  • Python 3.6
  • Pytorch 1.1.0

Evaluation

Firstly create directory ckpt/ and drag your model under it. For running the evaluation code, please download the PACS dataset from http://www.eecs.qmul.ac.uk/~dl307/project_iccv2017. Then update the files with suffix _test.txt in data/datalists for each domain, following styles below:

/home/user/data/images/PACS/kfold/art_painting/dog/pic_001.jpg 0
/home/user/data/images/PACS/kfold/art_painting/dog/pic_002.jpg 0
/home/user/data/images/PACS/kfold/art_painting/dog/pic_003.jpg 0
...

Once the data is prepared, remember to update the path of test files and output logs in shell_test.py:

input_dir = 'path/to/test/files'
output_dir = 'path/to/output/logs'

then simply run:

 python shell_test.py -d=art_painting

You can use the argument -d to specify the held-out target domain.

Training from scratch

After downloading the dataset, update the files with suffix _train.txt and _val.txt in data/datalists for each domain, following the same styles as the test files above. Please make sure you are using the official train-val-split. Then update the the path of train&val files and output logs in shell_train.py:

input_dir = 'path/to/train/files'
output_dir = 'path/to/output/logs'

Then running the code:

python shell_train.py -d=art_painting

Use the argument -d to specify the held-out target domain.

Acknowledgement

Part of our code is borrowed from the following repositories.

  • JigenDG: "Domain Generalization by Solving Jigsaw Puzzles", CVPR 2019
  • DDAIG: "Deep Domain-Adversarial Image Generation for Domain Generalisation", AAAI 2020

We thank to the authors for releasing their codes. Please also consider citing their works.

A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022