T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

Overview

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

The first Lidar-only odometry framework with high performance based on truncated least squares and Open3D point cloud library, The foremost improvement include:

  • Fast and precision pretreatment module, multi-region ground extraction and dynamic curved-voxel clustering perform ground point extraction and category segmentation.
  • Feature extraction based on principal component analysis(PCA) elaborate four distinctive feature,including: planar features, ground features, edge features, sphere features
  • There are three kinds of residual functions based on truncated least squares method for directly processing above features which are point-to-point, point-to-line, and point-to-plane.
  • Open3d point cloud library is integrated into SLAM algorithm framework for the first time. We extend more functions and implemented the message interface related to ROS.

[Demo Video] [Preprint Paper]

drawing

drawing drawing drawing drawing

Note that regard to pure odometry without corrections through loop closures, T-LOAM delivers much less drift than F-LOAM.

Framework overview

drawing

Each frame of the 3D LiDAR is processed as input. Four main processing modules are introduced to construct the backbone of the algorithm: (a) multi-region ground extraction module, (b) dynamic curved-voxel clustering module, (c) feature extraction module, (d) pose optimization module.

Evaluation

KITTI Sequence 00 F-LOAM T-LOAM
Translational Error(%) 1.11 0.98
Relative Error(°/100m) 0.40 0.60

Graphic Result(Path and Translation)

F-LOAM

drawing

T-LOAM

drawing

F-LOAM

drawing

T-LOAM

drawing

Dependency

-ROS(Melodic Ubuntu18.04)

sudo apt-get install python-catkin-tools ros-melodic-ecl-threads ros-melodic-jsk-recognition-msgs ros-melodic-jsk-visualization ros-melodic-velodyne-msgs

-YAML(0.6.3) Note that you must build a shared library due to we utilize the ros nodelet package.

tar -zxvf yaml-cpp-yaml-cpp-0.6.3.tar.gz
cd yaml-2.3.0 && mkdir build && cd build
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=ON] ..
make 
sudo make install

-Open3D(A Modern Library for 3D Data Processing 0.12.0)

Please note that open3d installation will be a slightly troublesome process, please be patient. Another problem that needs attention is that Open3D-ML cannot be used in ROS at the same time due to the link error2286 and error3432. In order to fix this, you need to specify the cmake flag -DGLIBCXX_USE_CXX11_ABI=ON. However, the latest Tensorflow2.4 installed through conda(not pip) already supports the C++11 API, you can check the API with print(tensorflow.__cxx11_abi_flag__). If the flag is true, you can set the compile flag -DBUILD_TENSORFLOW_OPS=ON Next, you can complete the installation according to the instructions

cd Open3D
util/scripts/install-deps-ubuntu.sh
mkdir build && cd build 
cmake \
    -DBUILD_SHARED_LIBS=ON \
    -DPYTHON_EXECUTABLE=$(which python3) \
    -DBUILD_CUDA_MODULE=ON \
    -DGLIBCXX_USE_CXX11_ABI=ON \
    -DBUILD_LIBREALSENSE=ON  \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=/usr/local \
    -DBUILD_PYTORCH_OPS=OFF \
    -DBUILD_TENSORFLOW_OPS=OFF \
    -DBUNDLE_OPEN3D_ML=ON \
    -DOPEN3D_ML_ROOT=${replace with own Open3D-ML path} \
    ../
make -j4
sudo make install 

If you have clone problems, you can download it directly from the link below.

Baidu Disk code: khy9 or Google Drive

-Ceres Solver(A large scale non-linear optimization library 2.0) you can complete the installation according to the guide

Installation

Now create the Catkin Environment:

mkdir -p ~/tloam_ws/src
cd ~/tloam_ws
catkin init
catkin config --merge-devel
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

And clone the project:

cd src
git clone https://github.com/zpw6106/tloam.git
catkin build

Usage

Download the KITTI Odometry Dataset (Graviti can provide faster download speed in China), then organize it according to the following structure, and modify the read path in the config/kitti/kitti_reader.yaml

drawing

-Example for running T-LOAM using the KITTI Dataset

roslaunch tloam tloam_kitti.launch

Contributors

Pengwei Zhou (Email: [email protected])

BibTex Citation

Thank you for citing our T-LOAM paper on IEEEif you use any of this code:

@ARTICLE{9446309,
  author={Zhou, Pengwei and Guo, Xuexun and Pei, Xiaofei and Chen, Ci},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time}, 
  year={2021},
  volume={},
  number={},
  pages={1-13},
  doi={10.1109/TGRS.2021.3083606}
  }

Credits

We hereby recommend reading A-LOAM ,floam and TEASER for reference and thank them for making their work public.

License

The source code is released under GPLv3 license.

I am constantly working on improving this code. For any technical issues or commercial use, please contact me([email protected]).

Owner
Pengwei Zhou
Lidar SLAM & Sensor Fusion
Pengwei Zhou
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022