T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

Overview

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

The first Lidar-only odometry framework with high performance based on truncated least squares and Open3D point cloud library, The foremost improvement include:

  • Fast and precision pretreatment module, multi-region ground extraction and dynamic curved-voxel clustering perform ground point extraction and category segmentation.
  • Feature extraction based on principal component analysis(PCA) elaborate four distinctive feature,including: planar features, ground features, edge features, sphere features
  • There are three kinds of residual functions based on truncated least squares method for directly processing above features which are point-to-point, point-to-line, and point-to-plane.
  • Open3d point cloud library is integrated into SLAM algorithm framework for the first time. We extend more functions and implemented the message interface related to ROS.

[Demo Video] [Preprint Paper]

drawing

drawing drawing drawing drawing

Note that regard to pure odometry without corrections through loop closures, T-LOAM delivers much less drift than F-LOAM.

Framework overview

drawing

Each frame of the 3D LiDAR is processed as input. Four main processing modules are introduced to construct the backbone of the algorithm: (a) multi-region ground extraction module, (b) dynamic curved-voxel clustering module, (c) feature extraction module, (d) pose optimization module.

Evaluation

KITTI Sequence 00 F-LOAM T-LOAM
Translational Error(%) 1.11 0.98
Relative Error(°/100m) 0.40 0.60

Graphic Result(Path and Translation)

F-LOAM

drawing

T-LOAM

drawing

F-LOAM

drawing

T-LOAM

drawing

Dependency

-ROS(Melodic Ubuntu18.04)

sudo apt-get install python-catkin-tools ros-melodic-ecl-threads ros-melodic-jsk-recognition-msgs ros-melodic-jsk-visualization ros-melodic-velodyne-msgs

-YAML(0.6.3) Note that you must build a shared library due to we utilize the ros nodelet package.

tar -zxvf yaml-cpp-yaml-cpp-0.6.3.tar.gz
cd yaml-2.3.0 && mkdir build && cd build
cmake [-G generator] [-DYAML_BUILD_SHARED_LIBS=ON] ..
make 
sudo make install

-Open3D(A Modern Library for 3D Data Processing 0.12.0)

Please note that open3d installation will be a slightly troublesome process, please be patient. Another problem that needs attention is that Open3D-ML cannot be used in ROS at the same time due to the link error2286 and error3432. In order to fix this, you need to specify the cmake flag -DGLIBCXX_USE_CXX11_ABI=ON. However, the latest Tensorflow2.4 installed through conda(not pip) already supports the C++11 API, you can check the API with print(tensorflow.__cxx11_abi_flag__). If the flag is true, you can set the compile flag -DBUILD_TENSORFLOW_OPS=ON Next, you can complete the installation according to the instructions

cd Open3D
util/scripts/install-deps-ubuntu.sh
mkdir build && cd build 
cmake \
    -DBUILD_SHARED_LIBS=ON \
    -DPYTHON_EXECUTABLE=$(which python3) \
    -DBUILD_CUDA_MODULE=ON \
    -DGLIBCXX_USE_CXX11_ABI=ON \
    -DBUILD_LIBREALSENSE=ON  \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_INSTALL_PREFIX=/usr/local \
    -DBUILD_PYTORCH_OPS=OFF \
    -DBUILD_TENSORFLOW_OPS=OFF \
    -DBUNDLE_OPEN3D_ML=ON \
    -DOPEN3D_ML_ROOT=${replace with own Open3D-ML path} \
    ../
make -j4
sudo make install 

If you have clone problems, you can download it directly from the link below.

Baidu Disk code: khy9 or Google Drive

-Ceres Solver(A large scale non-linear optimization library 2.0) you can complete the installation according to the guide

Installation

Now create the Catkin Environment:

mkdir -p ~/tloam_ws/src
cd ~/tloam_ws
catkin init
catkin config --merge-devel
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

And clone the project:

cd src
git clone https://github.com/zpw6106/tloam.git
catkin build

Usage

Download the KITTI Odometry Dataset (Graviti can provide faster download speed in China), then organize it according to the following structure, and modify the read path in the config/kitti/kitti_reader.yaml

drawing

-Example for running T-LOAM using the KITTI Dataset

roslaunch tloam tloam_kitti.launch

Contributors

Pengwei Zhou (Email: [email protected])

BibTex Citation

Thank you for citing our T-LOAM paper on IEEEif you use any of this code:

@ARTICLE{9446309,
  author={Zhou, Pengwei and Guo, Xuexun and Pei, Xiaofei and Chen, Ci},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={T-LOAM: Truncated Least Squares LiDAR-Only Odometry and Mapping in Real Time}, 
  year={2021},
  volume={},
  number={},
  pages={1-13},
  doi={10.1109/TGRS.2021.3083606}
  }

Credits

We hereby recommend reading A-LOAM ,floam and TEASER for reference and thank them for making their work public.

License

The source code is released under GPLv3 license.

I am constantly working on improving this code. For any technical issues or commercial use, please contact me([email protected]).

Owner
Pengwei Zhou
Lidar SLAM & Sensor Fusion
Pengwei Zhou
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022