Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Related tags

Deep LearningSLQ
Overview

SLQ

code for SLQ project, see our arXiv paper

@Article{Liu-preprint-slq,
  author     = {Meng Liu and David F. Gleich},
  journal    = {arXiv},
  title      = {Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering},
  year       = {2020},
  pages      = {2006.08569},
  volume     = {cs.SI},
  arxiv      = {http://arxiv.org/abs/2006.08569},
  mysoftware = {https://github.com/MengLiuPurdue/SLQ},
}

To run our code, simply include("SLQ.jl") This has minimal dependencies. Then to run the code on an Erdos-Renyi graph, run

using SparseArrays
# make an Erdos Renyi graph
A = triu(sprand(100,100,8/100),1)
A = max.(A,A') # symmetrize
fill!(A.nzval, 1) # set all values to 1. 
G = SLQ.graph(A) # convert an adjacency matrix into a graph
SLQ.slq_diffusion(SLQ.graph(A), 
	[1], # seed set
	 0.1, # value of gamma (regularization on seed) 
	 0.1, # value of kappa (sparsity regularization)
	 0.5, # value of rho (KKT apprx-val)
    SLQ.loss_type(1.4,0.0) # the loss-type, this is a 1.4-norm without huber)

SLQ via CVX

We need cvxpy. This can be installed in Julia's conda-forge environment. We try to do this when you include("SLQcvx.jl"). CVX does not support the q-huber penalties. This should just work.

Additional experiemtns with other dependencies

We need localgraphclustering for comparisons with CRD.

Install localgraphclustering

On my mac, with a homebrew install of Python, I just ran

pip3 install localgraphclustering --user

And then everything should just work. This will install localgraphclustering for the system python3. But then we use PyCall conda and just point it at the needed directory. Try include("CRD.jl").

Experiments

  • Visualization of image boundaries: experiment-image-boundary.jl
  • Visualization of effects in grid graph: experiment-grid-vis.jl
  • Experiment on LFR graphs: experiment-sparsity-runtime.jl and results analysis visualization-running-time.jl
  • Experiment on Facebook graphs: experiment-faebook.jland results analysis visualization-facebook-comapct.jl (this makes a lot of images) and a table to put into a latex document.
  • Experiment on DBLP and LiveJournal graphs: experiment-huge-graph.jl and results analysis visualization-huge-graph-compact.jl
  • Experiemnt on varying seeds in appendix: experiment-vary-seeds.jl
Owner
Meng Liu
Meng Liu
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022