Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Related tags

Deep LearningFineGPR
Overview

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Suncheng Xiang

Shanghai Jiao Tong University

Overview

In this paper, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.


[Paper] [Video Sample] [Related Project]


πŸ”₯ NEWS πŸ”₯

  • [10/2021] πŸ“£ The first FineGPR-C caption dataset involving human describing event is coming !

  • [09/2021] πŸ“£ The large-scale synthetic person dataset FineGPR with fine-grained attribute distribution is released !


Table of Contents πŸ‘€


FineGPR Introduction

The FineGPR dataset is generated by a popular GTA5 game engine that can synthesise images under controllable viewpoints, weathers,illuminations and backgrounds, as well as 13 fine-grained attributes at the identity level πŸ‘ .

Our FineGPR dataset provides fine-grained and accurately configurable annotations, including 36 different viewpoints, 7 different kinds of weathers, 7 different kinds of illuminations, and 9 different kinds of backgrounds.

Viewpoint πŸ“·

Definition of different viewpoints. Viewpoints of one identity are sampled at an interval of 10Β°, e.g. 0Β°-80Β° denotes that a person has 9 different angles in total.

Weather 🌨 and Illumination πŸŽ‡

The exemplars of different weather distribution (left) and illumination distribution (right) from the proposed FineGPR dataset.

Attributes at the Identity Level ⛹️‍♀️

The distributions of attributes at the identity level on FineGPR. The left figure shows the numbers of IDs for each attribute. The middle and right pies illustrate the distribution of the colors of upper-body and low-body clothes respectively.

Some visual exemplars with ID-level pedestrian attributes in the proposed FineGPR dataset, such as Wear short sleeve , Wear dress, Wear hat, Carry bag, etc.


Comparison with existing datasets

Some Mainstream Datasets for Person Re-Identification

For related FineGPR dataset (details of the previous related work, please refer to the our homepage GPR πŸ”Ž :

dataset IDs (ID-Attributes) boxs cams weathers illumination scene resolution
Market-1501 1,501 ( βœ”οΈ ) 32,668 6 - - - low
CUHK03 1,467 ( ❌ ) 14,096 2 - - - low
DukeMTMC-reID 1,404 ( βœ”οΈ ) 36,411 8 - - - low
MSMT17 4,101 ( ❌ ) 126,441 15 - - - vary
SOMAset 50 ( ❌ ) 100,000 250 - - - -
SyRI 100 ( ❌ ) 1,680,000 100 - 140 - -
PersonX 1,266 ( ❌ ) 273,456 6 - - 1 vary
Unreal 3,000 ( ❌ ) 120,000 34 - - 1 low
RandPerson 8,000 ( ❌ ) 1,801,816 19 - - 4 low
FineGPR 1150 ( βœ”οΈ ) 2,028,600 36 7 7 9 high

Link of the Dataset

Data of FineGPR for Viewpoint Analysis

A small subset of FineGPR can be downloaded from the following links:

Directories & Files of images

FineGPR_Dataset 
β”œβ”€β”€ FineGPR/   # This file is our original dataset, we provide the samples of ID=0001 and ID=0003 in this file folder.
β”‚   β”œβ”€β”€ 0001
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l01_p01.jpg 
β”‚   β”‚	β”œβ”€β”€ 0001_c01_w01_l02_p01.jpg  
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l03_p01.jpg
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ 0003/
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l01_p06.jpg  
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l02_p06.jpg
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l03_p06.jpg	   
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ FineGPR_subset   # This file is the subset of FineGPR dataset, each Identity contains 4 images. 
β”‚   β”œβ”€β”€ 0001_c01_w03_l05_p03.jpg 
β”‚   β”œβ”€β”€ 0001_c10_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c19_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c28_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0003_c01_w03_l05_p08.jpg 
β”‚   β”œβ”€β”€ 0003_c10_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c19_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c28_w03_l05_p08.jpg  
β”‚   └── ...
└── README.md   # Readme file

Name of the image

Taking "0001_c01_w01_l01_p01.jpg" as an example:

  • 0001 is the id of the person
  • c01 is the id of the camera
  • w01 is the id of the weather
  • l01 is the id of the illumination
  • p01 is the id of the background

Viewpoint annotations

FineGPR
β”œβ”€β”€ c01:90Β°      β”œβ”€β”€ c10:180Β°      β”œβ”€β”€ c19:270Β°      β”œβ”€β”€ c28:0Β°
β”œβ”€β”€ c02:100Β°     β”œβ”€β”€ c11:190Β°      β”œβ”€β”€ c20:280Β°      β”œβ”€β”€ c29:10Β°
β”œβ”€β”€ c03:110Β°     β”œβ”€β”€ c12:200Β°      β”œβ”€β”€ c21:290Β°      β”œβ”€β”€ c30:20Β°
β”œβ”€β”€ c04:120Β°     β”œβ”€β”€ c13:210Β°      β”œβ”€β”€ c22:300Β°      β”œβ”€β”€ c31:30Β°
β”œβ”€β”€ c05:130Β°     β”œβ”€β”€ c14:220Β°      β”œβ”€β”€ c23:310Β°      β”œβ”€β”€ c32:40Β°
β”œβ”€β”€ c06:140Β°     β”œβ”€β”€ c15:230Β°      β”œβ”€β”€ c24:320Β°      β”œβ”€β”€ c33:50Β°
β”œβ”€β”€ c07:150Β°     β”œβ”€β”€ c16:240Β°      β”œβ”€β”€ c25:330Β°      β”œβ”€β”€ c34:60Β°
β”œβ”€β”€ c08:160Β°     β”œβ”€β”€ c17:250Β°      β”œβ”€β”€ c26:340Β°      β”œβ”€β”€ c35:70Β°
└── c09:170Β°     └── c18:260Β°      └── c27:350Β°      └── c36:80Β°

Weather annotations

FineGPR
β”œβ”€β”€ w01:Sunny
β”œβ”€β”€ w02:Clouds    
β”œβ”€β”€ w03:Overcast
β”œβ”€β”€ w04:Foggy   
β”œβ”€β”€ w05:Neutral
β”œβ”€β”€ w06:Blizzard 
└── w07:Snowlight 	   

Illumination annotations

FineGPR
β”œβ”€β”€ l01:Midnight
β”œβ”€β”€ l02:Dawn    
β”œβ”€β”€ l03:Forenoon
β”œβ”€β”€ l04:Noon   
β”œβ”€β”€ l05:Afternoon
β”œβ”€β”€ l06:Dusk 
└── l07:Night 	   

Scene annotations

FineGPR
β”œβ”€β”€ p01:Urban
β”œβ”€β”€ p02:Urban   
β”œβ”€β”€ p03:Wild
β”œβ”€β”€ p04:Urban   
β”œβ”€β”€ p05:Wild
β”œβ”€β”€ p06:Urban
β”œβ”€β”€ p07:Urban
β”œβ”€β”€ p08:Wild 
└── p09:Urban 	   

Method

πŸ’‘ The two-stage pipeline AOST to learn attribute distribution of target domain. Firstly, we learn attribute distribution of real domain on the basis of XGBoost & PSO learning system. Secondly, we perform style transfer to enhance the reality of optimal dataset. Finally, the transferred data are adopted for downstream re-ID task.


Results

Performance comparison with existing Real and Synthetic datasets on Market-1501, DukeMTMC-reID and CUHK03, respectively.

References

  • [1] Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. CVPR 2018.
  • [2] Bag of tricks and a strong baseline for deep person re-identification. CVPRW 2019.

Extendibility

Accompanied with our FineGPR, we also provide some human body masks (Middle) and keypoint locations (Bottom) of all characters during the annotation. We hope that our synthetic dataset FineGPR can not only contribute a lot to the development of generalizable person re-ID, but also advance the research of other computer vision tasks, such as human part segmentation and pose estimation.

FineGPR-C caption dataset

On the basis of FineGPR dafaset, we introduce a dynamic strategy to generate high-quality captions with fine-grained attribute annotations for semantic-based pretraining. To be more specific, we rearrange the different attributes as word embeddings into caption formula in the different position, and then generate semantically dense caption with high-quality description, which gives rise to our newly constructed FineGPR-C caption dataset.

A small subset of FineGPR-C caption dataset can be downloaded from the following links:

Citation

If you use our FineGPR dataset for your research, please cite our Paper.

@article{xiang2021less,
  title={Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification},
  author={Xiang, Suncheng and You, Guanjie and Guan, Mengyuan and Chen, Hao and Wang, Feng and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2109.10498},
  year={2021}
}

If you do think this FineGPR-C caption dataset is useful and have used it in your research, please cite our Paper.

@article{xiang2021vtbr,
  title={VTBR: Semantic-based Pretraining for Person Re-Identification},
  author={Xiang, Suncheng and Zhang, Zirui and Guan, Mengyuan and Chen, Hao and Yan, Binjie and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2110.05074},
  year={2021}
}

Ethical Considerations

Our task and dataset were created with careful attention to ethical questions, which we encountered throughout our work. Access to our dataset will be provided for research purposes only and with restrictions on redistribution. Additionally, as we filtered out the sensitive attribute name in our fine-grained attribute annotation, our dataset cannot be easily repurposed for unintended tasks. Importantly, we are very cautious of human-annotation procedure of large scale datasets towards the social and ethical implications. Furthermore, we do not consider the datasets for developing non-research systems without further processing or augmentation. We hope this fine-grained dataset will shed light into potential tasks for the research community to move forward.


LICENSE

  • The FineGPR Dataset and FineGPR-C caption is made available for non-commercial purposes only.
  • You will not, directly or indirectly, reproduce, use, or convey the FineGPR dataset and FineGPR-C caption dataset or any Content, or any work product or data derived therefrom, for commercial purposes.

Permissions of this strong copyleft license (GNU General Public License v3.0) are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.


Acknowledgements

This research was supported by the National Natural Science Foundation of China under Project (Grant No. 61977045). We would like to thank authors of FineGPR, and FineGPR-Caption dataset for their work. They provide tremendous efforts in these dataset to advance the research in this field. We also appreciate Zefang Yu, Mingye Xie and Guanjie You for insightful feedback and discussion.


For further questions and suggestions about our datasets and methods, please feel free to contact Suncheng Xiang: [email protected]

Owner
SunchengXiang
SunchengXiang
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
GAT - Graph Attention Network (PyTorch) πŸ’» + graphs + πŸ“£ = ❀️

GAT - Graph Attention Network (PyTorch) πŸ’» + graphs + πŸ“£ = ❀️ This repo contains a PyTorch implementation of the original GAT paper ( πŸ”— VeličkoviΔ‡ et

Aleksa Gordić 1.9k Jan 09, 2023
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Syed Waqas Zamir 906 Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers πŸ”₯

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023