Location-Sensitive Visual Recognition with Cross-IOU Loss

Overview

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource.

Location-Sensitive Visual Recognition with Cross-IOU Loss

by Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang and Qi Tian

The code to train and evaluate the proposed LSNet is available here. For more technical details, please refer to our arXiv paper.

The location-sensitive visual recognition tasks, including object detection, instance segmentation, and human pose estimation, can be formulated into localizing an anchor point (in red) and a set of landmarks (in green). Our work aims to offer a unified framework for these tasks.

Abstract

Object detection, instance segmentation, and pose estimation are popular visual recognition tasks which require localizing the object by internal or boundary landmarks. This paper summarizes these tasks as location-sensitive visual recognition and proposes a unified solution named location-sensitive network (LSNet). Based on a deep neural network as the backbone, LSNet predicts an anchor point and a set of landmarks which together define the shape of the target object. The key to optimizing the LSNet lies in the ability of fitting various scales, for which we design a novel loss function named cross-IOU loss that computes the cross-IOU of each anchor-landmark pair to approximate the global IOU between the prediction and groundtruth. The flexibly located and accurately predicted landmarks also enable LSNet to incorporate richer contextual information for visual recognition. Evaluated on the MSCOCO dataset, LSNet set the new state-of-the-art accuracy for anchor-free object detection (a 53.5% box AP) and instance segmentation (a 40.2% mask AP), and shows promising performance in detecting multi-scale human poses.

If you encounter any problems in using our code, please contact Kaiwen Duan: [email protected]

Bbox AP(%) on COCO test-dev

Method Backbone epoch MStrain AP AP50 AP75 APS APM APL
Anchor-based:
Libra R-CNN X-101-64x4d 12 N 43.0 64.0 47.0 25.3 45.6 54.6
AB+FSAF* X-101-64x4d 18 Y 44.6 65.2 48.6 29.7 47.1 54.6
FreeAnchor* X-101-32x8d 24 Y 47.3 66.3 51.5 30.6 50.4 59.0
GFLV1* X-101-32x8d 24 Y 48.2 67.4 52.6 29.2 51.7 60.2
ATSS* X-101-64x4d-DCN 24 Y 50.7 68.9 56.3 33.2 52.9 62.4
PAA* X-101-64x4d-DCN 24 Y 51.4 69.7 57.0 34.0 53.8 64.0
GFLV2* R2-101-DCN 24 Y 53.3 70.9 59.2 35.7 56.1 65.6
YOLOv4-P7* CSP-P7 450 Y 56.0 73.3 61.2 38.9 60.0 68.6
Anchor-free:
ExtremeNet* HG-104 200 Y 43.2 59.8 46.4 24.1 46.0 57.1
RepPointsV1* R-101-DCN 24 Y 46.5 67.4 50.9 30.3 49.7 57.1
SAPD X-101-64x4d-DCN 24 Y 47.4 67.4 51.1 28.1 50.3 61.5
CornerNet* HG-104 200 Y 42.1 57.8 45.3 20.8 44.8 56.7
DETR R-101 500 Y 44.9 64.7 47.7 23.7 49.5 62.3
CenterNet* HG-104 190 Y 47.0 64.5 50.7 28.9 49.9 58.9
CPNDet* HG-104 100 Y 49.2 67.4 53.7 31.0 51.9 62.4
BorderDet* X-101-64x4d-DCN 24 Y 50.3 68.9 55.2 32.8 52.8 62.3
FCOS-BiFPN X-101-32x8-DCN 24 Y 50.4 68.9 55.0 33.2 53.0 62.7
RepPointsV2* X-101-64x4d-DCN 24 Y 52.1 70.1 57.5 34.5 54.6 63.6
LSNet R-50 24 Y 44.8 64.1 48.8 26.6 47.7 55.7
LSNet X-101-64x4d 24 Y 48.2 67.6 52.6 29.6 51.3 60.5
LSNet X-101-64x4d-DCN 24 Y 49.6 69.0 54.1 30.3 52.8 62.8
LSNet-CPV X-101-64x4d-DCN 24 Y 50.4 69.4 54.5 31.0 53.3 64.0
LSNet-CPV R2-101-DCN 24 Y 51.1 70.3 55.2 31.2 54.3 65.0
LSNet-CPV* R2-101-DCN 24 Y 53.5 71.1 59.2 35.2 56.4 65.8

A comparison between LSNet and the sate-of-the-art methods in object detection on the MS-COCO test-dev set. LSNet surpasses all competitors in the anchor-free group. The abbreviations are: ‘R’ – ResNet, ‘X’ – ResNeXt, ‘HG’ – Hourglass network, ‘R2’ – Res2Net, ‘CPV’ – corner point verification, ‘MStrain’ – multi-scale training, * – multi-scale testing.

Segm AP(%) on COCO test-dev

Method Backbone epoch AP AP50 AP75 APS APM APL
Pixel-based:
YOLACT R-101 48 31.2 50.6 32.8 12.1 33.3 47.1
TensorMask R-101 72 37.1 59.3 39.4 17.1 39.1 51.6
Mask R-CNN X-101-32x4d 12 37.1 60.0 39.4 16.9 39.9 53.5
HTC X-101-64x4d 20 41.2 63.9 44.7 22.8 43.9 54.6
DetectoRS* X-101-64x4d 40 48.5 72.0 53.3 31.6 50.9 61.5
Contour-based:
ExtremeNet HG-104 100 18.9 44.5 13.7 10.4 20.4 28.3
DeepSnake DLA-34 120 30.3 - - - - -
PolarMask X-101-64x4d-DCN 24 36.2 59.4 37.7 17.8 37.7 51.5
LSNet X-101-64x4d-DCN 30 37.6 64.0 38.3 22.1 39.9 49.1
LSNet R2-101-DCN 30 38.0 64.6 39.0 22.4 40.6 49.2
LSNet* X-101-64x4d-DCN 30 39.7 65.5 41.3 25.5 41.3 50.4
LSNet* R2-101-DCN 30 40.2 66.2 42.1 25.8 42.2 51.0

Comparison of LSNet to the sate-of-the-art methods in instance segmentation task on the COCO test-dev set. Our LSNet achieves the state-of-the-art accuracy for contour-based instance segmentation. ‘R’ - ResNet, ‘X’ - ResNeXt, ‘HG’ - Hourglass, ‘R2’ - Res2Net, * - multi-scale testing.

Keypoints AP(%) on COCO test-dev

Method Backbone epoch AP AP50 AP75 APM APL
Heatmap-based:
CenterNet-jd DLA-34 320 57.9 84.7 63.1 52.5 67.4
OpenPose VGG-19 - 61.8 84.9 67.5 58.0 70.4
Pose-AE HG 300 62.8 84.6 69.2 57.5 70.6
CenterNet-jd HG104 150 63.0 86.8 69.6 58.9 70.4
Mask R-CNN R-50 28 63.1 87.3 68.7 57.8 71.4
PersonLab R-152 >1000 66.5 85.5 71.3 62.3 70.0
HRNet HRNet-W32 210 74.9 92.5 82.8 71.3 80.9
Regression-based:
CenterNet-reg [66] DLA-34 320 51.7 81.4 55.2 44.6 63.0
CenterNet-reg [66] HG-104 150 55.0 83.5 59.7 49.4 64.0
LSNet w/ obj-box X-101-64x4d-DCN 60 55.7 81.3 61.0 52.9 60.5
LSNet w/ kps-box X-101-64x4d-DCN 20 59.0 83.6 65.2 53.3 67.9

Comparison of LSNet to the sate-of-the-art methods in pose estimation task on the COCO test-dev set. LSNet predict the keypoints by regression. ‘obj-box’ and ‘kps-box’ denote the object bounding boxes and the keypoint-boxes, respectively. For LSNet w/ kps-box, we fine-tune the model from the LSNet w/ kps-box for another 20 epochs.

Visualization

Some location-sensitive visual recognition results on the MS-COCO validation set.

We compared with the CenterNet to show that our LSNet w/ ‘obj-box’ tends to predict more human pose of small scales, which are not annotated on the dataset. Only pose results with scores higher than 0:3 are shown for both methods.

Left: LSNet uses the object bounding boxes to assign training samples. Right: LSNet uses the keypoint-boxes to assign training samples. Although LSNet with keypoint-boxes enjoys higher AP score, its ability of perceiving multi-scale human instances is weakened.

Preparation

The master branch works with PyTorch 1.5.0

The dataset directory should be like this:

├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── images
            ├── train2017
            ├── val2017
            ├── test2017

Generate extreme point annotation from segmentation:

  • cd code/tools
  • python gen_coco_lsvr.py
  • cd ..

Installation

1. Installing cocoapi
  • cd cocoapi/pycocotools
  • python setup.py develop
  • cd ../..
2. Installing mmcv
  • cd mmcv
  • pip install -e.
  • cd ..
3. Installing mmdet
  • python setup.py develop

Training and Evaluation

Our LSNet is based on mmdetection. Please check with existing dataset for Training and Evaluation.

Owner
Kaiwen Duan
Kaiwen Duan
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022