Pandas and Dask test helper methods with beautiful error messages.

Related tags

Data Analysisbeavis
Overview

beavis

Pandas and Dask test helper methods with beautiful error messages.

cornholio

test helpers

These test helper methods are meant to be used in test suites. They provide descriptive error messages to allow for a seamless development workflow.

The test helpers are inspired by chispa and spark-fast-tests, popular test helper libraries for the Spark ecosystem.

There are built-in Pandas testing methods that can also be used, but they don't provide error messages that are as easy to parse. The following sections compare the built-in Pandas output and what's output by Beavis, so you can choose for yourself.

Column comparisons

The built-in assert_series_equal method does not make it easy to decipher the rows that are equal and the rows that are different, so quickly fixing your tests and maintaining flow is hard.

Here's the built-in error message when comparing series that are not equal.

df = pd.DataFrame({"col1": [1042, 2, 9, 6], "col2": [5, 2, 7, 6]})
pd.testing.assert_series_equal(df["col1"], df["col2"])
>   ???
E   AssertionError: Series are different
E
E   Series values are different (50.0 %)
E   [index]: [0, 1, 2, 3]
E   [left]:  [1042, 2, 9, 6]
E   [right]: [5, 2, 7, 6]

Here's the beavis error message that aligns rows and highlights the mismatches in red.

import beavis

beavis.assert_pd_column_equality(df, "col1", "col2")

BeavisColumnsNotEqualError

You can also compare columns in a Dask DataFrame.

ddf = dd.from_pandas(df, npartitions=2)
beavis.assert_dd_column_equality(ddf, "col1", "col2")

The assert_dd_column_equality error message is similarly descriptive.

DataFrame comparisons

The built-in pandas.testing.assert_frame_equal method doesn't output an error message that's easy to understand, see this example.

df1 = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
df2 = pd.DataFrame({'col1': [5, 2], 'col2': [3, 4]})
pd.testing.assert_frame_equal(df1, df2)
E   AssertionError: DataFrame.iloc[:, 0] (column name="col1") are different
E
E   DataFrame.iloc[:, 0] (column name="col1") values are different (50.0 %)
E   [index]: [0, 1]
E   [left]:  [1, 2]
E   [right]: [5, 2]

beavis provides a nicer error message.

beavis.assert_pd_equality(df1, df2)

BeavisDataFramesNotEqualError

DataFrame comparison options:

  • check_index (default True)
  • check_dtype (default True)

Let's convert the Pandas DataFrames to Dask DataFrames and use the assert_dd_equality function to check they're equal.

ddf1 = dd.from_pandas(df1, npartitions=2)
ddf2 = dd.from_pandas(df2, npartitions=2)
beavis.assert_dd_equality(ddf1, ddf2)

These DataFrames aren't equal, so we'll get a good error message that's easy to debug.

Dask DataFrames not equal

Development

Install Poetry and run poetry install to create a virtual environment with all the Beavis dependencies on your machine.

Other useful commands:

  • poetry run pytest tests runs the test suite
  • poetry run black . to format the code
  • poetry build packages the library in a wheel file
  • poetry publish releases the library in PyPi (need correct credentials)
Owner
Matthew Powers
Data engineer. Like Scala, Spark, Ruby, data, and math.
Matthew Powers
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
Orchest is a browser based IDE for Data Science.

Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well

Orchest 3.6k Jan 09, 2023
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
Python for Data Analysis, 2nd Edition

Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy

Wes McKinney 18.6k Jan 08, 2023
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021
In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Raster_Sampling_Demo (Resulting graph of this demo) Background Sampling values of a raster at specific geographic coordinates can be done with a numbe

2 Dec 13, 2022
a tool that compiles a csv of all h1 program stats

h1stats - h1 Program Stats Scraper This python3 script will call out to HackerOne's graphql API and scrape all currently active programs for informati

Evan 40 Oct 27, 2022
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022