Making the DAEN information accessible.

Overview

AccessibleAdverseEventNotification

Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medications including the COVID-19 vaccines. This Database of Adverse Event Notifications (DAEN) is available to the public via this awful web interface. The most recent two weeks is never available.

The DAEN website doesn't provide information in a format that might be useful for analysis. Instead you have to scrape the information by entering each individual day and collecting the results from two tables which might span multiple pages. I've already done that and the code is here (this code isn't great, but it is good enough to get the job done).

Please be aware that the numbers reported in DAEN are probably significantly less than the actual number of adverse events and deaths. As the DAEN website states:

Adverse event reports from consumers and health professionals to the TGA are voluntary, so there is under-reporting by these groups of adverse events related to therapeutic goods in Australia. This is the same around the world.

The scraped data is found in the data directory. These files are tab separated files which you can easily import in to a spreadsheet program. All of the files are only for COVID-19 vaccines.

  • DAEN_webscrape_simple.txt This file shows the date (twice for reasons that made sense at the time, but don't necessarily make sense anymore), the number of cases reported that day, the number of cases with a single suspected medicine for that day, and the number of deaths reported that day.
  • DAEN_webscrape_medsummary.txt This file gives a daily count of each adverse event category. Please note that if one patient had multiple adverse events, then each event would be counted in the appropriate category.
  • DAEN_webscrape_listofreports.txt This file provides the individual reports and includes sex and age (when recorded).

Figure 1 shows some of the basic information such as number of adverse events and deaths reported each day for the COVID-19 vaccines, myocarditis, pericarditis and the more general term cardiac disorder.

Figure 1 Figure 1.

Figure 2 shows a histogram of reported cases of myocarditis and pericarditis from the COVID-19 vaccine. Please note that the age group 10-19 is somewhat distorted as the age 10-11 should not receive the vaccine (although there are cases of 8 year olds getting the vaccine when that should not have occurred). This age group also has a significantly lower uptake than other age groups.

Figure 2 Figure 2.

Figures 3 and 4 plot the reports of myocarditis by age grouped by sex or manufacturer respectively. Figures 5 and 6 are the same for pericarditis. A '-' is used where an age was not given in the report.

Figure 3 Figure 3.

Figure 4 Figure 4.

Figure 5 Figure 5.

Figure 6 Figure 6.

Figure 7 shows how the histogram for myocarditis has progressed over time.

Figure 7
Figure 7.

Figure 8 shows the death rate of people in Australia who contracted COVID-19. Data taken from health.gov on 1/12/2021. Bottom graph is zoomed in to 1% to see what is happening with those under the age of 60.

Figure 8
Figure 8.

Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022