PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

Related tags

Data Analysispostqf
Overview

PostQF

Copyright © 2022 Ralph Seichter

PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the manual page's subsection titled "JSON object format" for details. PostQF offers convenient features for analysis and and cleanup of Postfix mail queues.

I have used the all-purpose JSON manipulation utility "jq" before, but found it inconvenient for everyday Postfix administration tasks. "jq" offers great flexibility and handles all sorts of JSON input, but it comes at the cost of complexity. PostQF is an alternative specifically tailored for easier access to Postfix queues.

To facilitate the use of Unix-like pipelines, PostQF usually reads from stdin and writes to stdout. Using command line arguments, you can override this behaviour and define one or more input files and/or an output file. Depending on the context, a horizontal dash - represents either stdin or stdout. See the command line usage description below.

Example usage

Find all messages in the deferred queue where the delay reason contains the string connection timed out.

postqueue -j | postqf -q deferred -d 'connection timed out'

Find all messages in the active or hold queues which have at least one recipient in the example.com or example.org domains, and write the matching JSON records into the file /tmp/output.

postqueue -j | postqf -q 'active|hold' -r '@example\.(com|org)' -o /tmp/output

Find all messages all queues for which the sender address is [email protected] or [email protected], and pipe the queue IDs to postsuper in order to place the matching messages on hold.

postqueue -j | postqf -s '^(alice|bob)@gmail\.com$' -i | postsuper -h -

Print the number of messages which arrived during the last 30 minutes.

postqueue -j | postqf -a 30m | wc -l

The final example assumes a directory /tmp/data with several files, each containing JSON output produced at some previous time. The command pipes all queue IDs which have ever been in the hold queue into the file idlist, relying on BASH wildcard expansion to generate a list of input files.

postqf -i -q hold /tmp/data/*.json > idlist

Filters

Queue entries can be easily filtered by

  • Arrival time
  • Delay reason
  • Queue name
  • Recipient address
  • Sender address

and combinations thereof, using regular expressions. Anchoring is optional, meaning that plain text is treated as a substring pattern.

The arrival time filters do not use regular expressions, but instead a human-readable representation of a time difference. The format is W unit, without spaces. W is a "whole number" (i.e. a number ≥ 0). The unit is a single letter among s, m, h, d (seconds, minutes, hours, days).

-b 3d and -a 90m are both examples of valid command line arguments. Note that arrival filters are interpreted relative to the time PostQF is run. The two examples signify "message arrived more than 3 days ago" (before timestamp) and "message arrived less than 90 minutes ago" (after timestamp), respectively.

Command line usage

postqf [-h] [-i] [-d [REGEX]] [-q [REGEX]] [-r [REGEX]] [-s [REGEX]]
       [-a [TS] | -b [TS]] [-o [PATH]] [PATH [PATH ...]]

positional arguments:
  PATH        Input file. Use a dash "-" for standard input.

optional arguments:
  -h, --help  show this help message and exit
  -i          ID output only
  -o [PATH]   Output file. Use a dash "-" for standard output.

Regular expression filters:
  -d [REGEX]  Delay reason filter
  -q [REGEX]  Queue name filter
  -r [REGEX]  Recipient address filter
  -s [REGEX]  Sender address filter

Arrival time filters (mutually exclusive):
  -a [TS]     Message arrived after TS
  -b [TS]     Message arrived before TS

Installation

The only installation requirement is Python 3.7 or newer. PostQF is distributed via PyPI.org and can usually be installed using pip. If this fails, or if both Python 2.x and 3.x are installed on your machine, use pip3 instead.

If possible, use the recommended installation with a Python virtual environment. Site-wide installation usually requires root privileges.

# Recommended: Installation using a Python virtual environment.
mkdir ~/postqf
cd ~/postqf
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip postqf
# Alternative: Site-wide installation, requires root access.
sudo pip install postqf

The pip installation process adds a launcher executable postqf, either site-wide or in the Python virtual environment. In the latter case, the launcher will be placed into the directory .venv/bin which is automatically added to your PATH variable when you activate the venv environment as shown above.

Contact

The project is hosted on GitHub in the rseichter/postqf repository. If you have suggestions or run into any problems, please check the discussions section first. There is also an issue tracker available, and the build configuration file contains a contact email address.

You might also like...
Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. Fancy data functions that will make your life as a data scientist easier.
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

Comments
  • Permit using

    Permit using "before" and "after" time filters at the same time

    The command line arguments -a and -b are mutually exclusive as of release 0.1. If using both at the same time was permitted, users could express an interval, allowing searches for "message arrived between timestamps X and Y".

    enhancement 
    opened by rseichter 1
  • Support absolute time for before/after filter arguments

    Support absolute time for before/after filter arguments

    Command line arguments -a and -b currently allow only passing a time difference like 45m or 3d. It would be helpful to also support strings representing absolute points in time. Here is an example for how it might look when using the ISO 8601 format:

    $ date --iso-8601=s
    2022-01-23T22:10:56+01:00
    
    $ postqueue -b '2022-01-23T22:10:56+01:00'
    

    It would also be useful to allow passing epoch time arguments, because postqueue -j returns message arrival times as seconds since the Epoch.

    enhancement 
    opened by rseichter 1
Releases(0.5)
  • 0.5(Feb 6, 2022)

    In addition to filtering JSON input and producing JSON output in the process, PostQF can now also generate a number of simple reports to answer some frequently asked questions about message queue content. The following data can be shown in reports:

    • Delay reason
    • Recipient address
    • Recipient domain
    • Sender address
    • Sender domain
    Source code(tar.gz)
    Source code(zip)
  • 0.4(Feb 2, 2022)

  • 0.3(Jan 28, 2022)

    • Output is now correctly rendered as JSON instead of a Python dict.
    • Simplified installation process. In addition to pip based setup, an installation BASH script is now provided.
    Source code(tar.gz)
    Source code(zip)
  • 0.2(Jan 24, 2022)

    • Release 0.2 introduces the ability to use both -a and -b time filters simultaneously, in order to specify time intervals.
    • Time filter strings can now use ISO 8601 strings and Unix time in addition to relative time differences expressed in the form 42m or 2d. This allows users to also specify absolute points in time as arrival thresholds.
    Source code(tar.gz)
    Source code(zip)
  • 0.1(Jan 23, 2022)

Owner
Ralph Seichter
Ralph Seichter
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
General Assembly's 2015 Data Science course in Washington, DC

DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (

Kevin Markham 1.6k Jan 07, 2023
Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022