AI pipelines for Nvidia Jetson Platform

Overview

Jetson Multicamera Pipelines

Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project:

  • Builds a typical multi-camera pipeline, i.e. N×(capture)->preprocess->batch->DNN-> <<your application logic here>> ->encode->file I/O + display. Uses gstreamer and deepstream under-the-hood.
  • Gives programatic acces to configure the pipeline in python via jetmulticam package.
  • Utilizes Nvidia HW accleration for minimal CPU usage. For example, you can perform object detection in real-time on 6 camera streams using as little as 16.5% CPU. See benchmarks below for details.

Demos

You can easily build your custom logic in python by accessing image data (via np.array), as well object detection results. See examples of person following below:

DashCamNet (DLA0) + PeopleNet (DLA1) on 3 camera streams.

We have 3 intependent cameras with ~270° field of view. Red Boxes correspond to DashCamNet detections, green ones to PeopleNet. The PeopleNet detections are used to perform person following logic.

demo_8_follow_me.mp4

PeopleNet (GPU) on 3 cameras streams.

Robot is operated in manual mode.

demo_9_security_nvidia.mp4

DashCamNet (GPU) on 3 camera streams.

Robot is operated in manual mode.

demo_1_fedex_driver.mp4

(All demos are performed in real-time onboard Nvidia Jetson Xavier NX)

Quickstart

Install:

git clone https://github.com/NVIDIA-AI-IOT/jetson-multicamera-pipelines.git
cd jetson-multicamera-pipelines
bash scripts/install-dependencies.sh
pip3 install .

Run example with your cameras:

source scripts/env_vars.sh 
cd examples
python3 example.py

Usage example

import time
from jetmulticam import CameraPipelineDNN
from jetmulticam.models import PeopleNet, DashCamNet

if __name__ == "__main__":

    pipeline = CameraPipelineDNN(
        cameras=[2, 5, 8],
        models=[
            PeopleNet.DLA1,
            DashCamNet.DLA0,
            # PeopleNet.GPU
        ],
        save_video=True,
        save_video_folder="/home/nx/logs/videos",
        display=True,
    )

    while pipeline.running():
        arr = pipeline.images[0] # np.array with shape (1080, 1920, 3), i.e. (1080p RGB image)
        dets = pipeline.detections[0] # Detections from the DNNs
        time.sleep(1/30)

Benchmarks

# Scenario # cams CPU util.
(jetmulticam)
CPU util.
(nvargus-deamon)
CPU
total
GPU % EMC util % Power draw Inference Hardware
1. 1xGMSL -> 2xDNNs + disp + encode 1 5.3% 4% 9.3% <3% 57% 8.5W DLA0: PeopleNet DLA1: DashCamNet
2. 2xGMSL -> 2xDNNs + disp + encode 2 7.2% 7.7% 14.9% <3% 62% 9.4W DLA0: PeopleNet DLA1: DashCamNet
3. 3xGMSL -> 2xDNNs + disp + encode 3 9.2% 11.3% 20.5% <3% 68% 10.1W DLA0: PeopleNet DLA1: DashCamNet
4. Same as #3 with CPU @ 1.9GHz 3 7.5% 9.0% <3% 68% 10.4w DLA0: PeopleNet DLA1: DashCamNet
5. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 9.5% 11.3% 20.8% <3% 45% 9.1W DLA0: PeopleNet (interval=1) DLA1: DashCamNet (interval=1)
6. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 8.3% 11.3% 19.6% <3% 25% 7.5W DLA0: PeopleNet (interval=6) DLA1: DashCamNet (interval=6)
7. 3xGMSL -> DNN + disp + encode 5 10.3% 12.8% 23.1% 99% 25% 15W GPU: PeopleNet

Notes:

  • All figures are in 15W 6 core mode. To reproduce do: sudo nvpmodel -m 2; sudo jetson_clocks;
  • Test platform: Jetson Xavier NX and XNX Box running JetPack v4.5.1
  • The residual GPU usage in DLA-accelerated nets is caused by Sigmoid activations being computed with CUDA backend. Remaining layers are computed on DLA.
  • CPU usage will vary depending on factors such as camera resolution, framerate, available video formats and driver implementation.

More

Supported models / acceleratorss

pipeline = CameraPipelineDNN(
    cam_ids = [0, 1, 2]
    models=[
        models.PeopleNet.DLA0,
        models.PeopleNet.DLA1,
        models.PeopleNet.GPU,
        models.DashCamNet.DLA0,
        models.DashCamNet.DLA1,
        models.DashCamNet.GPU
        ]
    # ...
)
Owner
NVIDIA AI IOT
NVIDIA AI IOT
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022