[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

Overview

involution

Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVPR'21)

By Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, and Qifeng Chen

TL; DR. involution is a general-purpose neural primitive that is versatile for a spectrum of deep learning models on different vision tasks. involution bridges convolution and self-attention in design, while being more efficient and effective than convolution, simpler than self-attention in form.

Getting Started

This repository is fully built upon the OpenMMLab toolkits. For each individual task, the config and model files follow the same directory organization as mmcls, mmdet, and mmseg respectively, so just copy-and-paste them to the corresponding locations to get started.

For example, in terms of evaluating detectors

git clone https://github.com/open-mmlab/mmdetection # and install

cp det/mmdet/models/backbones/* mmdetection/mmdet/models/backbones
cp det/mmdet/models/necks/* mmdetection/mmdet/models/necks
cp det/mmdet/models/utils/* mmdetection/mmdet/models/utils

cp det/configs/_base_/models/* mmdetection/mmdet/configs/_base_/models
cp det/configs/_base_/schedules/* mmdetection/mmdet/configs/_base_/schedules
cp det/configs/involution mmdetection/mmdet/configs -r

cd mmdetection
# evaluate checkpoints
bash tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

For more detailed guidance, please refer to the original mmcls, mmdet, and mmseg tutorials.

Currently, we provide an memory-efficient implementation of the involuton operator based on CuPy. Please install this library in advance. A customized CUDA kernel would bring about further acceleration on the hardware. Any contribution from the community regarding this is welcomed!

Model Zoo

The parameters/FLOPs↓ and performance↑ compared to the convolution baselines are marked in the parentheses. Part of these checkpoints are obtained in our reimplementation runs, whose performance may show slight differences with those reported in our paper. Models are trained with 64 GPUs on ImageNet, 8 GPUs on COCO, and 4 GPUs on Cityscapes.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%) Config Download
RedNet-26 9.23(32.8%↓) 1.73(29.2%↓) 75.96 93.19 config model | log
RedNet-38 12.39(36.7%↓) 2.22(31.3%↓) 77.48 93.57 config model | log
RedNet-50 15.54(39.5%↓) 2.71(34.1%↓) 78.35 94.13 config model | log
RedNet-101 25.65(42.6%↓) 4.74(40.5%↓) 78.92 94.35 config model | log
RedNet-152 33.99(43.5%↓) 6.79(41.4%↓) 79.12 94.38 config model | log

Before finetuning on the following downstream tasks, download the ImageNet pre-trained RedNet-50 weights and set the pretrained argument in det/configs/_base_/models/*.py or seg/configs/_base_/models/*.py to your local path.

Object Detection and Instance Segmentation on COCO

Faster R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 31.6(23.9%↓) 177.9(14.1%↓) 39.5(1.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 29.5(28.9%↓) 135.0(34.8%↓) 40.2(2.5↑) config model | log

Mask R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP mask AP Config Download
RedNet-50-FPN convolution pytorch 1x 34.2(22.6%↓) 224.2(11.5%↓) 39.9(1.5↑) 35.7(0.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 32.2(27.1%↓) 181.3(28.5%↓) 40.8(2.4↑) 36.4(1.3↑) config model | log

RetinaNet

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 27.8(26.3%↓) 210.1(12.2%↓) 38.2(1.6↑) config model | log
RedNet-50-FPN involution pytorch 1x 26.3(30.2%↓) 199.9(16.5%↓) 38.2(1.6↑) config model | log

Semantic Segmentation on Cityscapes

Method Backbone Neck Crop Size Lr schd Params(M) FLOPs(G) mIoU Config download
FPN RedNet-50 convolution 512x1024 80000 18.5(35.1%↓) 293.9(19.0%↓) 78.0(3.6↑) config model | log
FPN RedNet-50 involution 512x1024 80000 16.4(42.5%↓) 205.2(43.4%↓) 79.1(4.7↑) config model | log
UPerNet RedNet-50 convolution 512x1024 80000 56.4(15.1%↓) 1825.6(3.6%↓) 80.6(2.4↑) config model | log

Citation

If you find our work useful in your research, please cite:

@InProceedings{Li_2021_CVPR,
author = {Li, Duo and Hu, Jie and Wang, Changhu and Li, Xiangtai and She, Qi and Zhu, Lei and Zhang, Tong and Chen, Qifeng},
title = {Involution: Inverting the Inherence of Convolution for Visual Recognition},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022