Complete* list of autonomous driving related datasets

Overview

AD Datasets

Complete* and curated list of autonomous driving related datasets

Contributing

Contributions are very welcome! To add or update a dataset:

  • Update my-app/src/data.js: image

  • Make sure the dataset you add or edit has as many attributes as possible filled out:

    • Some attributes can only be found in associated papers
    • Some attributes can only be found in associated websites
    • Some attributes can only be found in the dataset itself
  • Send a pull request based on the created fork

Example Contribution

This is how the KITTI dataset is integrated into the website:

[...]
{
    id: "KITTI", //07.08. fertig
    href: "http://www.cvlibs.net/datasets/kitti/",
    size_hours: "6",
    size_storage: "180",
    frames: "",
    numberOfScenes: '50',
    samplingRate: "10",
    lengthOfScenes: "",
    sensors: "camera, lidar, gps/imu",
    sensorDetail: "2 greyscale cameras 1.4 MP, 2 color cameras 1.4 MP, 1 lidar 64 beams 360° 10Hz, 1 inertial and " +
        "GPS navigation system",
    benchmark: " stereo, optical flow, visual odometry, slam, 3d object detection, 3d object tracking",
    annotations: "3d bounding boxes",
    licensing: "Creative Commons Attribution-NonCommercial-ShareAlike 3.0",
    relatedDatasets: 'Semantic KITTI, KITTI-360',
    publishDate: new Date("2012-3").toISOString().split('T')[0],
    lastUpdate: new Date("2021-2").toISOString().split('T')[0],
    relatedPaper: "http://www.cvlibs.net/publications/Geiger2013IJRR.pdf",
    location: "Karlsruhe, Germany",
    rawData: "Yes"
},
[...]

* You're missing a dataset? Simply create a pull request ;)

Metadata

In the following, the scheme according to which the entries of the respective properties have resulted is illuminated.

Annotations

This property describes the types of annotations with which the data sets have been provided.

Benchmark

If benchmark challenges are explicitly listed with the data sets, they are specified here.

Frames

Frames states the number of frames in the data set. This includes training, test and validation data.

Last Update

If information has been provided on updates and their dates, they can be found in this category.

Licensing

In order to give the users an impression of the licenses of the data sets, information on them is already included in the tool. Location. This category lists the areas where the data sets have been recorded.

N° Scenes

N° Scenes shows the number of scenes contained in the data set and includes the training, testing and validation segments. In the case of video recordings, one recording corresponds to one scene. For data sets consisting of photos, a photo is the equivalent to a scene.

Publish Date

The initial publication date of the data set can be found under this category. If no explicit information on the date of publication of the data set could be found, the submission date of the paper related to the set was used at this point.

Related Data Sets

If data sets are related, the names of the related sets can be examined as well. Related data sets are, for example, those published by the same authors and building on one another.

Related Paper

This property solely consists of a link to the paper related to the data set. Sampling Rate [Hz]. The Sampling Rate [Hz] property specifies the sampling rate in Hertz at which the sensors in the data set work. However, this declaration is only made if all sensors are working at the same rate or, alternatively, if the sensors are being synchronized. Otherwise the field remains empty.

Scene Length [s]

This property describes the length of the scenes in seconds in the data set, provided all scenes have the same length. Otherwise no information is given. For example, if a data set has scenes with lengths between 30 and 60 seconds, no entry can be made. The background to this procedure is to maintain comparability and sortability.

Sensor Types

This category contains a rough description of the sensor types used. Sensor types are, for example, lidar or radar.

Sensors - Details

The Sensors - Detail category is an extension of the Sensor Types category. It includes a more detailed description of the sensors. The sensors are described in detail in terms of type and number, the frame rates they work with, the resolutions which sensors have and the horizontal field of view.

Size [GB]

The category Size [GB] describes the storage size of the data set in gigabytes.

Size [h]

The Size [h] property is the equivalent of the Size [GB] described above, but provides information on the size of the data set in hours.

Location

The place(s) the data was recorded at

rawData

Denotes if the dataset provides raw or processed data

Citation

If you find this code useful for your research, please cite our paper:

@article{Bogdoll_addatasets_2022_VEHITS,
    author    = {Bogdoll, Daniel and Schreyer, Felix, and Z\"{o}llner, J. Marius},
    title     = {{ad-datasets: a meta-collection of data sets for autonomous driving}},
    journal   = {arXiv preprint:2202.01909},
    year      = {2022},
}
Owner
Daniel Bogdoll
PhD student at FZI and KIT with a focus on deep learning and autonomous driving.
Daniel Bogdoll
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022