原神抽卡记录数据集-Genshin Impact gacha data

Overview

提要

持续收集原神抽卡记录中

可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后将文件提交到此处。以下两种导出工具任选其一即可。

一种抽卡记录导出工具 from sunfkny 使用方法演示视频

另一种electron版的抽卡记录导出工具 from lvlvl

目前数据集中有195917条抽卡记录

数据使用说明

你可以以个人身份自由的使用本项目数据用于抽卡机制研究,你可以自由的修改和发布我的分析代码(虽然我这代码还不如重新写一次)

但是一定不要将抽卡数据集发布整合到别的平台上,若如此,以后有人去使用多个来源的抽卡数据可能会遇到严重的数据重复问题。请让想要获得抽卡数据朋友来GitHub下载,或注明数据来自本项目。

在使用本数据集得出任何结论时,请自问过程是否严谨,结论是否可信。不应当发布显然不正确的抽卡模型或是不正确且会造成不良影响的模型,如造成不良影响,数据集整理者和提供数据的玩家不负任何责任。

通过一段时间的研究,我基本整理出了原神抽卡的所有机制:

原神抽卡全机制总结

分析抽卡机制的一些工具

数据格式说明

dataset_02文件夹中文件从0001开始顺序编号

每个文件夹内包含一个账号的抽卡记录

  • gacha100.csv 记录初行者推荐祈愿抽卡数据
  • gacha200.csv 记录常驻祈愿抽卡数据
  • gacha301.csv 记录角色活动祈愿数据
  • gacha302.csv 记录武器活动祈愿数据

csv文件内数据记录格式如下

抽卡时间 名称 类别 星级
YYYY-MM-DD HH:MM:SS 物品全名 角色/武器 3/4/5

推荐数据处理方式

计算综合概率估计值时采用无偏估计量

使用物品出现总次数/每次最后一次抽到研究星级物品时的抽数作为估计量

请不要使用物品出现总次数/总抽数,这对于原神这样的抽卡有保底的情况下并不是官方公布综合概率的无偏估计,会使得估计概率偏低

举个例子,如果数据中所有账号都只在常驻祈愿中抽10次,那么大量数据下统计得到的五星频率应该是0.6%,而不是1.6%。统计五星时应取最后一次抽到五星物品时的抽数作为总抽数,同理也应这样应用于四星

对于每个账号,去除抽取到的前几个五星/四星

收集数据时要求抽卡数据提供者标明自己是否有刷过初始五星号等,意用于去除玩家行为带来的偏差

后来发现很多提供者并未标注,并且及时不刷初始号,一开始就抽到了五星的玩家更容易留下来继续游戏,造成偏差

而对于玩了一会已经有一定数量五星的玩家,能不能再抽到五星对其是否继续玩的影响变得更低了

因此可以去除每个账号抽到的前N个五星,N的个数可以据情况选取,可以获得偏差更低的数据

同理也可以应用于四星的统计

精细研究四星概率时略去总抽数过少的数据

总抽数过少时,很难出现已经抽了九次没四星,然后抽到第十次出了五星这类情况,会导致四星的出率偏高

使用抽数较多的数据可以更精细的研究四星的概率

谨慎处理武器池

武器池的数据量比较小,做任何判断时都应该谨慎。若草草下了结论,造成了严重的影响,下结论的人是有责任的。

分析工具说明

DataAnalysis.py用于分析csv抽卡文件,这段代码还在重写中,会非常的难用,仅供参考,运行后会输出参考统计量并画出分布图,分布图中理论值是我根据实际数据、部分游戏文件推理建立的概率增长模型。

DistributionMatrix.py用于在四星五星耦合的情况下分析设计模型的抽卡概率和分布,是计算抽卡模型的综合概率与期望的大杀器

Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023