T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

Overview

T'rex Park(霸王龙公园)

Trexpark项目由有赞数据智能团队开源,是国内首个基于电商大数据训练的开源NLP和图像项目。我们预期将逐步开放基于商品标题,评论,客服对话等NLP语聊,以及商品主图,品牌logo等进行预训练的NLP和图像模型。


为什么是霸王龙?

霸王龙

霸王龙是有赞的吉祥物。呃,准确的说这不是个吉祥物,而是有赞人自我鞭策的精神图腾。早期我们的网站经常崩溃,导致浏览器会显示一个霸王龙的图案,提示页面崩溃了。于是我们就把霸王龙作为我们的吉祥物,让大家时刻警惕故障和缺陷。


为什么要开源模型?

和平台电商不同,有赞是一家商家服务公司,我们的使命是帮助每一位重视产品和服务的商家成功。因此我们放弃了通过开放接口提供服务的方式,直接把底层能力开放出来,提供给需要的商家和中小型电商企业,帮助他们在有赞的数据沉淀基础上,快速构建自己的机器学习应用。


为什么要做领域预训练模型?

目前各个开源大模型往往基于通用语料训练,而通用语料的语言模型用于特定领域的机器学习任务,往往效果不佳,或者需要对预训练模型部分进行finetune。我们的实践发现,基于电商数据finetune以后的预训练模型,能更好的学习到领域知识,并且在多项任务中,无须额外训练,或者仅仅对模型的预测部分进行训练就可以达到很好的效果。

我们基于电商领域语料训练的预训练模型非常适合小样本的机器学习任务,用于解决中小电商企业和商家的fewshot难题。以商品标题分类为例,每个类目只需要100个样本,就能得到很好的分类效果,具体例子可以看这里

我们的模型已经在HuggingFace的model hub上发布,想要使用我们的模型,只需要几行代码

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("youzanai/bert-product-title-chinese")
model = AutoModel.from_pretrained("youzanai/bert-product-title-chinese")

模型加载后,我们就可以执行简单的encoder任务了

batch = tokenizer(["青蒿精油手工皂", "超级飞侠乐迪太空车"])
outputs = model(**batch)
print(outputs.logits)

项目的src目录中有完整的代码和测试用的数据,可以直接运行浏览效果。


文档和帮助

详细的使用文档我们还在编写中,大家可以先参考src目录中的示例代码。为了让代码更容易理解,我们已经尽可能的对代码进行了精简。T'rex Park底层使用了HuggingFace的Transformer框架,关于Transformer的文档可以看这里

Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Seonghwan Kim 24 Sep 11, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
C.J. Hutto 3.8k Dec 30, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022