Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

Overview

human-pose-estimation-3d-python-cpp

  • RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used)

ezgif com-gif-maker (16)

1. Run

1-1. RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used)

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--device /dev/video1:/dev/video1:mwr \
--device /dev/video2:/dev/video2:mwr \
--device /dev/video3:/dev/video3:mwr \
--device /dev/video4:/dev/video4:mwr \
--device /dev/video5:/dev/video5:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device CPU \
--input 4

1-2. RealSenseD435 (RGB) 480x640 + iGPU (OpenCL)

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--device /dev/video1:/dev/video1:mwr \
--device /dev/video2:/dev/video2:mwr \
--device /dev/video3:/dev/video3:mwr \
--device /dev/video4:/dev/video4:mwr \
--device /dev/video5:/dev/video5:mwr \
--net=host \
-e LIBVA_DRIVER_NAME=iHD \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device GPU \
--input 4

1-3. General USB Camera 480x640 + CPU

$ xhost +local: && \
docker run -it --rm \
-v `pwd`:/home/user/workdir \
-v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
--device /dev/video0:/dev/video0:mwr \
--net=host \
-e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
-e DISPLAY=$DISPLAY \
--privileged \
ghcr.io/pinto0309/openvino2tensorflow:latest
$ python3 human_pose_estimation_3d_demo.py \
--model models/openvino/FP16/human-pose-estimation-3d-0001_bgr_480x640.xml \
--device CPU \
--input 0

2. Build

$ PYTHON_PREFIX=$(python3 -c "import sys; print(sys.prefix)") \
&& PYTHON_VERSION=$(python3 -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')") \
&& PYTHON_INCLUDE_DIRS=${PYTHON_PREFIX}/include/python${PYTHON_VERSION}

$ NUMPY_INCLUDE_DIR=$(python3 -c "import numpy; print(numpy.get_include())")

$ mkdir -p pose_extractor/build && cd pose_extractor/build

$ cmake \
-DPYTHON_INCLUDE_DIRS=${PYTHON_INCLUDE_DIRS} \
-DNUMPY_INCLUDE_DIR=${NUMPY_INCLUDE_DIR} ..

$ make && cp pose_extractor.so ../.. && cd ../..

3. Reference

  1. https://github.com/openvinotoolkit/open_model_zoo/tree/2021.4.1/demos/human_pose_estimation_3d_demo/python
  2. https://docs.openvino.ai/2021.4/omz_models_model_human_pose_estimation_3d_0001.html
  3. https://github.com/PINTO0309/PINTO_model_zoo/tree/main/029_human-pose-estimation-3d-0001
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022