Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Overview

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification

We provide the codes for reproducing result of our paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Installation

  1. Basic environments: python3.6, pytorch1.8.0, cuda11.1.

  2. Our codes structure is based on Torchreid. (More details can be found in link: https://github.com/KaiyangZhou/deep-person-reid , you can download the packages according to Torchreid requirements.)

# create environment
cd AAAI2022_IEEE/
conda create --name ieeeReid python=3.6
conda activate ieeeReid

# install dependencies
# make sure `which python` and `which pip` point to the correct path
pip install -r requirements.txt

# install torch and torchvision (select the proper cuda version to suit your machine)
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# install torchreid (don't need to re-build it if you modify the source code)
python setup.py develop

Get start

  1. You can use the setting in im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml to get the results of full IEEE.

    python ./scripts/mainMultiModal.py --config-file ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml --seed 40
  2. You can run other methods by using following configuration file:

    # MLFN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_mlfn.yaml
    
    # HACNN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hacnn.yaml
    
    # OSNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_osnet.yaml
    
    # HAMNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # PFNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # full IEEE
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml

Details

  1. The details of our Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM) can be found in .\torchreid\models\ieee3modalPart.py. The design of Multi-modal Margin Loss(3M loss) can be found in .\torchreid\losses\multi_modal_margin_loss_new.py.

  2. Ablation study settings.

    You can control these two modules and the loss by change the corresponding codes.

    1. Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM)
    # change the code in .\torchreid\models\ieee3modalPart.py
    
    class IEEE3modalPart(nn.Module):
        def __init__(···
        ):
            modal_number = 3
            fc_dims = [128]
            pooling_dims = 768
            super(IEEE3modalPart, self).__init__()
            self.loss = loss
            self.parts = 6
            
            self.backbone = nn.ModuleList(···
            )
    		
    		  # using Cross-modal Interacting Module (CIM)
            self.interaction = True
            # using channel attention in CIM
            self.attention = True
            
            # using Relation-based Embedding Module (REM)
            self.using_REM = True
            
            ···
    1. Multi-modal Margin Loss(3M loss)
    # change the code in .\configs\your_config_file.yaml
    
    # using Multi-modal Margin Loss(3M loss), you can change the margin by modify the parameter of "ieee_margin".
    ···
    loss:
      name: 'margin'
      softmax:
        label_smooth: True
      ieee_margin: 1
      weight_m: 1.0
      weight_x: 1.0
    ···
    
    # using only CE loss
    ···
    loss:
      name: 'softmax'
      softmax:
        label_smooth: True
      weight_x: 1.0
    ···
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022