PyTorch implementation of SQN based on CloserLook3D's encoder

Overview

SQN_pytorch

This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, check our SQN_tensorflow repo.

Caution: currently, this repo does not achieve a satisfactory result as the SQN paper reports. For performance details, check performance section.

The repo is still under development, with the aim of reaching the level of performance reported in the SQN paper.(Note: our SQN_tensorflow repo has slightly higher performance than this pytorch repo.)

Please open an issue, if you have any comments and suggestions for improving the model performance.

TODOs

  • implement the training strategy mentioned in the Appendix of the paper.
  • ablation study
  • benchmark weak supervision

Install python packages

The latest codes are tested on two Ubuntu settings:

  • Ubuntu 18.04, Nvidia 1080, CUDA 10.1, PyTorch 1.4 and Python 3.6
  • Ubuntu 18.04, Nvidia 3090, CUDA 11.3, PyTorch 1.4 and Python 3.6

For details setting up the development environment, check CloserLook3D Pytorch version. To facilitate settings, below I also provide my own bash script( install.sh ) to create a conda environment from scratch for this repo. (You may need tailor this script according to your own system)

#!/bin/bash
ENV_NAME='closerlook'
conda create –n $ENV_NAME python=3.6.10 -y
source activate $ENV_NAME
conda install -c anaconda pillow=6.2 -y
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch -y
conda install -c conda-forge opencv -y
pip3 install termcolor tensorboard h5py easydict

Datasets

Take S3DIS as an example.

Scene Segmentation on S3DIS

You can download the S3DIS dataset from here (4.8 GB). You only need to download the file named Stanford3dDataset_v1.2.zip, unzip and move (or link) it to data/S3DIS/Stanford3dDataset_v1.2. (same as the CloserLook3D repo setting.)

The file structure should look like:

<root>
├── cfgs
│   └── s3dis
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           └── Area_6
├── init.sh
├── datasets
├── function
├── models
├── ops
└── utils

run prepare-s3dis-sqn.sh to preprocess the S3DIS dataset. This script will generate a processed folder with the below structure with five types of data, including: raw, sub-sampled point clouds for each area, KDtrees for each sub-sampled area, projection indices for each raw point over the sub-sampled area and weak labels for raw and sub-sampled point clouds (involving different weak proportion of the dataset, e.g., 0.1, 0.01, 0.001, etc.. Details check datasets/S3DIS_sqn.py and my summary notes in this file.

The processed folder is organized as follows:

<root>
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           ├── Area_6
│           └── processed
│             ├── weak_label_0.01
│             ├── weak_label_1.0
│             ├── Area_1_0.040_sub.pkl
│             ├── Area_1.pkl
│             ├── ...(many other pkl files)

Compile custom CUDA operators

sh init.sh

Run

use the run-sqn.sh script for training or evaluation.

The core training script is as follows:

python -m torch.distributed.launch \
--master_port 1234567 \
--nproc_per_node ${num_gpu} \
function/train_s3dis_dist_sqn.py \
--dataset_name ${dataset_name} \
--cfg cfgs/${dataset_name}/pospool_xyz_avg_sqn.yaml \
--num_points ${num_points} \
--batch_size ${batch_size} \
--val_freq 20 \
--weak_ratio ${weak_ratio}

The core evaluation script is as follows:

python -m torch.distributed.launch \
--master_port 12346 \
--nproc_per_node 1 \
function/evaluate_s3dis_dist_sqn.py \
--cfg cfgs/s3dis/pospool_xyz_avg_sqn.yaml \
--load_path <checkpoint>
[--log_dir <log directory>]

Performance on S3DIS

The experiments are still in progress due to my slow GPU.

Model Weak ratio Performance (mIoU, %) Description
Official RandLA-Net 100% 63.0 Fully supervised method trained with full labels.
Official SQN 1/1000 61.4 This official SQN uses additional techniques to improve the performance, our replicaed SQN currently does not investigate this yet. Official SQN does not provide results of S3DIS under the weak ratio of 1/10 and 1/100
Our replicated SQN 1/10 51.4 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/100 25.22 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/1000 21.10 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.

Acknowledgements

Our pytorch codes borrowed a lot from CloserLook3D and the custom trilinear interoplation CUDA ops are modified from erikwijmans's Pointnet2_PyTorch.

Citation

If you find our work useful in your research, please consider citing:

@article{pytorchpointnet++,
    Author = {YIN, Chao},
    Title = {SQN Pytorch implementation based on CloserLook3D's encoder},
    Journal = {https://github.com/PointCloudYC/SQN_pytorch},
    Year = {2021}
   }

@article{hu2021sqn,
    title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels},
    author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
    journal={arXiv preprint arXiv:2104.04891},
    year={2021}
  }
Owner
PointCloudYC
Ph.D candidate at HKUST, focus on point cloud processing and deep learning.
PointCloudYC
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022