Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Overview

Event Queue Dialect

Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Motivation

The main motivation of the event queue dialect is to efficiently estimate performance of programs running on heterogenous accelerators. The dialect is designed to bridge the gap between low-level hardware specific dialects and high-level dialects with little hardware specific information, thus facilitating custom lowering among different design choices. In particular, the EventQueue dialect supports modeling memory size constraints, bandwidth constraints, and processing time across a large number of heterogenous processors with distributed event-based control.

By and large, event queue dialect is design to estimate performance of concurrent devices. It supports:

  • Arbitrary hardware hierarchy and each hardware with its own properties.

  • Modeling data movement and buffer allocation that is critical to energy and efficiency estimation.

  • Model concurrency between heterogenous devices.

Check further documentation to see how the goals are achieved.

EQueue Dialect in MLIR Lowering Pipeline

lowering_pipeline

Event queue dialect is designed to do performance analysis.

Because there is a gap between high level dialect that has no structure information, and low level dialect that is too detail to analyze, event queue dialect bridges them.

The input for the event queue dialect is high level control dialect without structure and the output will be dialect describing detailed structure information.

In the lowering pipeline, equeue dialect is at the same level as gpu dialect. The difference is that existing gpu dialect assumes a synchronous gpu model and try to communicate with gpu.barrier among concurrent gpus, while equeue dialect models a more general design, where it allows any kinds of structure, thus allowing maximum flexibility. To describe the complexity of any possible structure in a flexible device like FPGA, equeue dialect develops a general semantics for asynchronous communication between concurrent devices.

How to Use

Dependency

The dependency of this project is MLIR. Because MLIR is project that frequently being updated. When I started the EQueue project, The latest stable version was 12-init. One needs checkout to the right version.

git clone https://github.com/llvm/llvm-project.git
git fetch --all --tags
git checkout tags/llvmorg-12-init -b 
   

   

and then follow MLIR quick start to build executable.

Quick Start

After git clone and cd the repo,

mkdir build
cp *.sh build/
cd build
#change LLVM_EXTERNAL_LIT and MLIR_DIR in run.sh to your local directory
sh config; sh run.sh
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir]

Debug Outputs

If one want to turn on debug outputs with -debug or debug-only when there are multiple debugging options

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug
# when there are multiple debugging options
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug-only=command_processor
# to redirect output to file
./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -debug > & report

Visualization

By default equeue-opt will generate a Trace Event Format JSON file to test/Equeue/out.json . You can specify the output file name with -json

./bin/equeue-opt ../test/Equeue/[path-to-input-file.mlir] -json [path-to-json-file.json]

The output JSON file can be viewed in chrome://tracing/

Below is the visualization of running test/EQueue/gpu.mlir

visualization

Examples

You may want to check on Examples on the convolution and the finite impulse response. Detailed explanation can be found in the example directory

Paper and Citation

The paper is accepted to HPCA 2022. We upload a preprint to Arxiv.

Contact

I am Zhijing at Cornell University. This project is originally my Xilinx internship project. I extend after the internship and now it is accepted by HPCA 2022. I will put the reference later. If getting to any trouble, you can contact me at [email protected]

Owner
Cornell Capra
Computer architecture & programming abstractions at Cornell University.
Cornell Capra
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021