(AAAI 2021) Progressive One-shot Human Parsing

Overview

End-to-end One-shot Human Parsing

This is the official repository for our two papers:


Introduction:

In the two papers, we propose a new task named One-shot Human Parsing (OSHP). OSHP requires parsing humans in a query image into an open set of reference classes defined by any single reference example (i.e., a support image) during testing, no matter whether they have been annotated during training (base classes) or not (novel classes). This new task mainly aims to accommodate human parsing into a wider range of applications that seek to parse flexible fashion/clothing classes that are not pre-defined in previous large-scale datasets.

Progressive One-shot Human Parsing (AAAI 2021) applies a progressive training scheme and is separated into three stages.

End-to-end One-shot Human Parsing (journal version) is a one-stage end-to-end training method, which has higher performance and FPS.


Main results:

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, Kway F1 ATR-OS, Kway Fold F2 LIP-OS, Kway F1 LIP-OS, Kway F2 CIHP-OS, Kway F1 CIHP-OS Kway F2
Novel mIoU 31.1 34.6 25.7 30.4 20.5 25.1
Human mIoU 61.9 63.3 43.0 45.7 49.1 45.5
Model Model Coming Soon Model Model Model Model

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, 1way F1 ATR-OS, 1way F2 LIP-OS, 1way F1 LIP-OS, 1way F2 CIHP-OS, 1way F1 CIHP-OS 1way F2
Novel mIoU 53.0 41.4 42.0 46.2 25.4 36.4
Human mIoU 68.2 69.5 57.0 58.0 53.8 55.4
Model Coming Soon

Getting started:

Data preparation:

First, please download ATR, LIP and CIHP dataset from source. Then, use the following commands to link the data into our project folder. Please also remember to download the atr flipped labels and cihp flipped labels.

# ATR dataset
$ ln -s YOUR_ATR_PATH/JPEGImages/* YOUR_PROJECT_ROOT/ATR_OS/trainval_images
$ ln -s YOUR_ATR_PATH/SegmentationClassAug/* YOUR_PROJECT_ROOT/ATR_OS/trainval_classes
$ ln -s YOUR_ATR_PATH/SegmentationClassAug_rev/* YOUR_PROJECT_ROOT/ATR_OS/Category_rev_ids


# LIP dataset
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/train_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/val_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/train_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/val_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/Train_parsing_reversed_labels/TrainVal_parsing_annotations/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids
$ ln -s YOUR_LIP_PATH/val_segmentations_reversed/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids


# CIHP dataset
$ ln -s YOUR_CIHP_PATH/Training/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Validation/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Training/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Validation/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Category_rev_ids/* YOUR_PROJECT_ROOT/CIHP_OS/Category_rev_ids

Please also download our generated support .pkl files from source, which contains each class's image IDs. You can also generate support files on your own by controlling dtrain_dtest_split in oshp_loader.py, however, the training and validation list might be different from our paper.

Finally, your data folder should look like this:

${PROJECT ROOT}
|-- data
|   |--datasets
|       |-- ATR_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   `-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_atr_supports.pkl
|       |   |   `-- meta_test_atr_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- 997-1.jpg
|       |   |   |-- 997-2.jpg
|       |   |   `-- ...
|       |   |-- trainval_classes
|       |   |   |-- 997-1.png
|       |   |   |-- 997-2.png
|       |   |   `-- ... 
|       |   `-- Category_rev_ids
|       |       |-- 997-1.png
|       |       |-- 997-2.png
|       |       `-- ... 
|       |-- LIP_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   |-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_lip_supports.pkl
|       |   |   `-- meta_test_lip_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- ...
|       |   |-- trainval_classes
|       |   |   |-- ... 
|       |   `-- Category_rev_ids
|       |       |-- ... 
|       `-- CIHP_OS
|           |-- list
|           |   |-- meta_train_id.txt
|           |   |-- meta_test_id.txt
|           |-- support
|           |   |-- meta_train_cihp_supports.pkl
|           |   `-- meta_test_cihp_supports.pkl
|           |-- trainval_images
|           |   |-- ...
|           |-- trainval_classes
|           |   |-- ... 
|           `-- Category_rev_ids
|               |-- ... 

Finally, please download the DeepLab V3+ pretrained model (pretrained on COCO dataset) from source and put it into the data folder:

${PROJECT ROOT}
|-- data
|   |--pretrained_model
|       |--deeplab_v3plus_v3.pth

Installation:

Please make sure your current environment has Python >= 3.7.0 and pytorch >= 1.1.0. The pytorch can be downloaded from source.

Then, clone the repository and install the dependencies from the following commands:

git clone https://github.com/Charleshhy/One-shot-Human-Parsing.git
cd One-shot-Human-Parsing
pip install -r requirements.txt

Training:

To train EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/atr_eop_kwf1.sh

Validation:

To evaluate EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/evaluate_atr_eop_kwf1.sh

TODO:

  • Release training/validation code for POPNet
  • Release well-trained EOPNet 1-way models

Citation:

If you find our papers or this repository useful, please consider cite our papers:

@inproceedings{he2021progressive,
title={Progressive One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Thuraisingham, Bhavani and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021}
}

@article{he2021end,
title={End-to-end One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhuang, Bohan and Cai, Jianfei and Tao, Dacheng},
journal={arXiv preprint arXiv:2105.01241},
year={2021}
}

Acknowledgement:

This repository is mainly developed basing on Graphonomy and Grapy-ML.

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022