(AAAI 2021) Progressive One-shot Human Parsing

Overview

End-to-end One-shot Human Parsing

This is the official repository for our two papers:


Introduction:

In the two papers, we propose a new task named One-shot Human Parsing (OSHP). OSHP requires parsing humans in a query image into an open set of reference classes defined by any single reference example (i.e., a support image) during testing, no matter whether they have been annotated during training (base classes) or not (novel classes). This new task mainly aims to accommodate human parsing into a wider range of applications that seek to parse flexible fashion/clothing classes that are not pre-defined in previous large-scale datasets.

Progressive One-shot Human Parsing (AAAI 2021) applies a progressive training scheme and is separated into three stages.

End-to-end One-shot Human Parsing (journal version) is a one-stage end-to-end training method, which has higher performance and FPS.


Main results:

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, Kway F1 ATR-OS, Kway Fold F2 LIP-OS, Kway F1 LIP-OS, Kway F2 CIHP-OS, Kway F1 CIHP-OS Kway F2
Novel mIoU 31.1 34.6 25.7 30.4 20.5 25.1
Human mIoU 61.9 63.3 43.0 45.7 49.1 45.5
Model Model Coming Soon Model Model Model Model

You can find the well-trained models together with the performance in the following table.

EOPNet ATR-OS, 1way F1 ATR-OS, 1way F2 LIP-OS, 1way F1 LIP-OS, 1way F2 CIHP-OS, 1way F1 CIHP-OS 1way F2
Novel mIoU 53.0 41.4 42.0 46.2 25.4 36.4
Human mIoU 68.2 69.5 57.0 58.0 53.8 55.4
Model Coming Soon

Getting started:

Data preparation:

First, please download ATR, LIP and CIHP dataset from source. Then, use the following commands to link the data into our project folder. Please also remember to download the atr flipped labels and cihp flipped labels.

# ATR dataset
$ ln -s YOUR_ATR_PATH/JPEGImages/* YOUR_PROJECT_ROOT/ATR_OS/trainval_images
$ ln -s YOUR_ATR_PATH/SegmentationClassAug/* YOUR_PROJECT_ROOT/ATR_OS/trainval_classes
$ ln -s YOUR_ATR_PATH/SegmentationClassAug_rev/* YOUR_PROJECT_ROOT/ATR_OS/Category_rev_ids


# LIP dataset
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/train_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_images/TrainVal_images/val_images/* YOUR_PROJECT_ROOT/LIP_OS/trainval_images
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/train_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/TrainVal_parsing_annotations/TrainVal_parsing_annotations/val_segmentations/* YOUR_PROJECT_ROOT/LIP_OS/trainval_classes
$ ln -s YOUR_LIP_PATH/Train_parsing_reversed_labels/TrainVal_parsing_annotations/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids
$ ln -s YOUR_LIP_PATH/val_segmentations_reversed/* YOUR_PROJECT_ROOT/LIP_OS/Category_rev_ids


# CIHP dataset
$ ln -s YOUR_CIHP_PATH/Training/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Validation/Images/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_images
$ ln -s YOUR_CIHP_PATH/Training/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Validation/Category_ids/* YOUR_PROJECT_ROOT/CIHP_OS/trainval_classes
$ ln -s YOUR_CIHP_PATH/Category_rev_ids/* YOUR_PROJECT_ROOT/CIHP_OS/Category_rev_ids

Please also download our generated support .pkl files from source, which contains each class's image IDs. You can also generate support files on your own by controlling dtrain_dtest_split in oshp_loader.py, however, the training and validation list might be different from our paper.

Finally, your data folder should look like this:

${PROJECT ROOT}
|-- data
|   |--datasets
|       |-- ATR_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   `-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_atr_supports.pkl
|       |   |   `-- meta_test_atr_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- 997-1.jpg
|       |   |   |-- 997-2.jpg
|       |   |   `-- ...
|       |   |-- trainval_classes
|       |   |   |-- 997-1.png
|       |   |   |-- 997-2.png
|       |   |   `-- ... 
|       |   `-- Category_rev_ids
|       |       |-- 997-1.png
|       |       |-- 997-2.png
|       |       `-- ... 
|       |-- LIP_OS
|       |   |-- list
|       |   |   |-- meta_train_id.txt
|       |   |   |-- meta_test_id.txt
|       |   |-- support
|       |   |   |-- meta_train_lip_supports.pkl
|       |   |   `-- meta_test_lip_supports.pkl
|       |   |-- trainval_images
|       |   |   |-- ...
|       |   |-- trainval_classes
|       |   |   |-- ... 
|       |   `-- Category_rev_ids
|       |       |-- ... 
|       `-- CIHP_OS
|           |-- list
|           |   |-- meta_train_id.txt
|           |   |-- meta_test_id.txt
|           |-- support
|           |   |-- meta_train_cihp_supports.pkl
|           |   `-- meta_test_cihp_supports.pkl
|           |-- trainval_images
|           |   |-- ...
|           |-- trainval_classes
|           |   |-- ... 
|           `-- Category_rev_ids
|               |-- ... 

Finally, please download the DeepLab V3+ pretrained model (pretrained on COCO dataset) from source and put it into the data folder:

${PROJECT ROOT}
|-- data
|   |--pretrained_model
|       |--deeplab_v3plus_v3.pth

Installation:

Please make sure your current environment has Python >= 3.7.0 and pytorch >= 1.1.0. The pytorch can be downloaded from source.

Then, clone the repository and install the dependencies from the following commands:

git clone https://github.com/Charleshhy/One-shot-Human-Parsing.git
cd One-shot-Human-Parsing
pip install -r requirements.txt

Training:

To train EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/atr_eop_kwf1.sh

Validation:

To evaluate EOPNet in End-to-end One-shot Human Parsing (journal version), run:

# OSHP kway on ATR-OS fold 1
bash scripts/evaluate_atr_eop_kwf1.sh

TODO:

  • Release training/validation code for POPNet
  • Release well-trained EOPNet 1-way models

Citation:

If you find our papers or this repository useful, please consider cite our papers:

@inproceedings{he2021progressive,
title={Progressive One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Thuraisingham, Bhavani and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021}
}

@article{he2021end,
title={End-to-end One-shot Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhuang, Bohan and Cai, Jianfei and Tao, Dacheng},
journal={arXiv preprint arXiv:2105.01241},
year={2021}
}

Acknowledgement:

This repository is mainly developed basing on Graphonomy and Grapy-ML.

A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022