Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Overview

Trajectory Transformer

Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem.

Installation

All python dependencies are in environment.yml. Install with:

conda env create -f environment.yml
conda activate trajectory
pip install -e .

For reproducibility, we have also included system requirements in a Dockerfile (see installation instructions), but the conda installation should work on most standard Linux machines.

Usage

Train a transformer with: python scripts/train.py --dataset halfcheetah-medium-v2

To reproduce the offline RL results: python scripts/plan.py --dataset halfcheetah-medium-v2

By default, these commands will use the hyperparameters in config/offline.py. You can override them with runtime flags:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--horizon 5 --beam_width 32

A few hyperparameters are different from those listed in the paper because of changes to the discretization strategy. These hyperparameters will be updated in the next arxiv version to match what is currently in the codebase.

Pretrained models

We have provided pretrained models for 16 datasets: {halfcheetah, hopper, walker2d, ant}-{expert-v2, medium-expert-v2, medium-v2, medium-replay-v2}. Download them with ./pretrained.sh

The models will be saved in logs/$DATASET/gpt/pretrained. To plan with these models, refer to them using the gpt_loadpath flag:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--gpt_loadpath gpt/pretrained

pretrained.sh will also download 15 plans from each model, saved to logs/$DATASET/plans/pretrained. Read them with python plotting/read_results.py.

To create the table of offline RL results from the paper, run python plotting/table.py. This will print a table that can be copied into a Latex document. (Expand to view table source.)
\begin{table*}[h]
\centering
\small
\begin{tabular}{llrrrrrr}
\toprule
\multicolumn{1}{c}{\bf Dataset} & \multicolumn{1}{c}{\bf Environment} & \multicolumn{1}{c}{\bf BC} & \multicolumn{1}{c}{\bf MBOP} & \multicolumn{1}{c}{\bf BRAC} & \multicolumn{1}{c}{\bf CQL} & \multicolumn{1}{c}{\bf DT} & \multicolumn{1}{c}{\bf TT (Ours)} \\
\midrule
Medium-Expert & HalfCheetah & $59.9$ & $105.9$ & $41.9$ & $91.6$ & $86.8$ & $95.0$ \scriptsize{\raisebox{1pt}{$\pm 0.2$}} \\
Medium-Expert & Hopper & $79.6$ & $55.1$ & $0.9$ & $105.4$ & $107.6$ & $110.0$ \scriptsize{\raisebox{1pt}{$\pm 2.7$}} \\
Medium-Expert & Walker2d & $36.6$ & $70.2$ & $81.6$ & $108.8$ & $108.1$ & $101.9$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\
Medium-Expert & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $116.1$ \scriptsize{\raisebox{1pt}{$\pm 9.0$}} \\
\midrule
Medium & HalfCheetah & $43.1$ & $44.6$ & $46.3$ & $44.0$ & $42.6$ & $46.9$ \scriptsize{\raisebox{1pt}{$\pm 0.4$}} \\
Medium & Hopper & $63.9$ & $48.8$ & $31.3$ & $58.5$ & $67.6$ & $61.1$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\
Medium & Walker2d & $77.3$ & $41.0$ & $81.1$ & $72.5$ & $74.0$ & $79.0$ \scriptsize{\raisebox{1pt}{$\pm 2.8$}} \\
Medium & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $83.1$ \scriptsize{\raisebox{1pt}{$\pm 7.3$}} \\
\midrule
Medium-Replay & HalfCheetah & $4.3$ & $42.3$ & $47.7$ & $45.5$ & $36.6$ & $41.9$ \scriptsize{\raisebox{1pt}{$\pm 2.5$}} \\
Medium-Replay & Hopper & $27.6$ & $12.4$ & $0.6$ & $95.0$ & $82.7$ & $91.5$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\
Medium-Replay & Walker2d & $36.9$ & $9.7$ & $0.9$ & $77.2$ & $66.6$ & $82.6$ \scriptsize{\raisebox{1pt}{$\pm 6.9$}} \\
Medium-Replay & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $77.0$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\
\midrule
\multicolumn{2}{c}{\bf Average (without Ant)} & 47.7 & 47.8 & 36.9 & 77.6 & 74.7 & 78.9 \hspace{.6cm} \\
\multicolumn{2}{c}{\bf Average (all settings)} & $-$ & $-$ & $-$ & $-$ & $-$ & 82.2 \hspace{.6cm} \\
\bottomrule
\end{tabular}
\label{table:d4rl}
\end{table*}

To create the average performance plot, run python plotting/plot.py. (Expand to view plot.)

Docker

Copy your MuJoCo key to the Docker build context and build the container:

cp ~/.mujoco/mjkey.txt azure/files/
docker build -f azure/Dockerfile . -t trajectory

Test the container:

docker run -it --rm --gpus all \
	--mount type=bind,source=$PWD,target=/home/code \
	--mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \
	trajectory \
	bash -c \
	"export PYTHONPATH=$PYTHONPATH:/home/code && \
	python /home/code/scripts/train.py --dataset hopper-medium-expert-v2 --exp_name docker/"

Running on Azure

Setup

  1. Launching jobs on Azure requires one more python dependency:
pip install git+https://github.com/JannerM/[email protected]
  1. Tag the image built in the previous section and push it to Docker Hub:
export DOCKER_USERNAME=$(docker info | sed '/Username:/!d;s/.* //')
docker tag trajectory ${DOCKER_USERNAME}/trajectory:latest
docker image push ${DOCKER_USERNAME}/trajectory
  1. Update azure/config.py, either by modifying the file directly or setting the relevant environment variables. To set the AZURE_STORAGE_CONNECTION variable, navigate to the Access keys section of your storage account. Click Show keys and copy the Connection string.

  2. Download azcopy: ./azure/download.sh

Usage

Launch training jobs with python azure/launch_train.py and planning jobs with python azure/launch_plan.py.

These scripts do not take runtime arguments. Instead, they run the corresponding scripts (scripts/train.py and scripts/plan.py, respectively) using the Cartesian product of the parameters in params_to_sweep.

Viewing results

To rsync the results from the Azure storage container, run ./azure/sync.sh.

To mount the storage container:

  1. Create a blobfuse config with ./azure/make_fuse_config.sh
  2. Run ./azure/mount.sh to mount the storage container to ~/azure_mount

To unmount the container, run sudo umount -f ~/azure_mount; rm -r ~/azure_mount

Reference

@inproceedings{janner2021sequence,
  title = {Offline Reinforcement Learning as One Big Sequence Modeling Problem},
  author = {Michael Janner and Qiyang Li and Sergey Levine},
  booktitle = {Advances in Neural Information Processing Systems},
  year = {2021},
}

Acknowledgements

The GPT implementation is from Andrej Karpathy's minGPT repo.

Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021