“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Overview

Data Augmentation for Cross-Domain Named Entity Recognition

Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio

License: MIT

This repository contains the implementations of the system described in the paper "Data Augmentation for Cross-Domain Named Entity Recognition" at EMNLP 2021 conference.

The main contribution of this paper is a novel neural architecture that can learn the textual patterns and effectively transform the text from a high-resource to a low-resource domain. Please refer to the paper for details.

Installation

We have updated the code to work with Python 3.9, Pytorch 1.9, and CUDA 11.1. If you use conda, you can set up the environment as follows:

conda create -n style_NER python==3.9
conda activate style_NER
conda install pytorch==1.9 cudatoolkit=11.1 -c pytorch

Also, install the dependencies specified in the requirements.txt:

pip install -r requirements.txt

Data

Please download the data with the following links: OntoNotes-5.0-NER-BIO and Temporal Twitter Corpus. We provide two toy datasets under the data/linearized_domain dictory for cross-domain mapping experiments and data/ner directory for NER experiments. After downloading the data with the links above, you may need to preprocess it so that it can have the same format as toy datasets and put them under the corresponding directory.

Data pre-processing

For data pre-processing, we provide some functions under the src/commons/preproc_domain.py and src/commons/preproc_ner.py directory. You can use them to convert the data to the json format for cross-domain mapping experiments.

Data post-processing

After generating the data, you may want to use the code under the src/commons/postproc_domain.py directory to convert the data from json to CoNLL format for named entity recognition experiments.

Running

There are two main stages to run this project.

  1. Cross-domain mapping with cross-domain autoencoder
  2. Named entity recognition with sequencel labeling model

1. Cross-domain Mapping

Training

You can train a model from pre-defined config files in this repo with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json

The code saves a model checkpoint after every epoch if the model improves (either lower loss or higher metric). You will notice that a directory is created using the experiment id (e.g. style_NER/checkpoints/cdar1.0-nw-sm/). You can resume training by running the same command.

Two phases training: our training algorithm includes two phases: 1) in the first phase, we train the model with only denoising reconstruction and domain classification, and 2) in the second phase, we train the model together with denoising reconstruction, detransforming reconstruction, and the domain classification. To do this, you can simply set lambda_cross as 0 for the first phase and 1 for the second phase in the config file.

    ...
    "lambda_coef":{
        "lambda_auto": 1.0,
        "lambda_adv": 10.0,
        "lambda_cross": 1.0
    }
    ...
Evaluate

To evaluate the model, use --mode eval (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode eval
Generation

To evaluate the model, use --mode generate (default: train):

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_domain/main.py --config configs/exp_domain/cdar1.0-nw-sm.json --mode generate

2. Named Entity Recognition

We fine-tune a sequence labeling model (BERT + Linear) to evaluate our cross-domain mapping method. After generating the data, you can add the path of the generated data into the configuration file and run the code with the following command:

CUDA_VISIBLE_DEVICES=[gpu_id] python src/exp_ner/main.py --config configs/exp_ner/ner1.0-nw-sm.json

Citation

(Comming soon...)

Contact

Feel free to get in touch via email to [email protected].

Owner
<a href=[email protected]">
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Selene is a Python library and command line interface for training deep neural networks from biological sequence data such as genomes.

Troyanskaya Laboratory 323 Jan 01, 2023