Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Overview

Breast Cancer Classification

  Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms. The metrics below have been used to determine these algorithms performance.

  • Accuracy
  • Precision
  • Recall
  • F Score

Accuracy may produce misleading results so because of that I also added some metrics which some of them are more reliable (e.g. F Score).

Algorithms

  Logistic regression, SVM (Support Vector Machines), decision trees, random forest, naive bayes, k-nearest neighbor algorithms have been used and for each of them metrics are calculated and results are shown.

Data Preprocessing

  The dataset contains no missing rows or columns so we can start feature selection. To do that I used correlation map to show the correlation between features. And I eliminated mostly correlated features like perimeter_mean and perimeter_worst. After this process we have 18 features.

image

Then we apply data normalization and our data is ready for classification.

# Data normalization
standardizer = StandardScaler()
X = standardizer.fit_transform(X)

Train and Test Split

I have split my dataset as %30 test, % 70 training and set random_state parameter to 0 as shown.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

After splitting dataset, I created dictionaries for algorithms and metrics. And in one for loop every model trained and tested.

models = {'Logistic Regression': LogisticRegression(), 'Support Vector Machines': LinearSVC(),
          'Decision Trees': DecisionTreeClassifier(), 'Random Forest': RandomForestClassifier(),
          'Naive Bayes': GaussianNB(), 'K-Nearest Neighbor': KNeighborsClassifier()}

accuracy, precision, recall, f_score = {}, {}, {}, {}

for key in models.keys():
    # Fit the classifier model
    models[key].fit(X_train, y_train)

    # Classification
    classification = models[key].predict(X_test)

    # Calculate Accuracy, Precision, Recall and F Score Metrics
    accuracy[key] = accuracy_score(classification, y_test)
    precision[key] = precision_score(classification, y_test)
    recall[key] = recall_score(classification, y_test)
    f_score[key] = f1_score(classification, y_test)

Results

As you can see the figure below, most successful classification algorithm seems to logistic regression. And decision tress has the worst performance.

image

To see the values algorithms got for each metric see the table below.

Algorithm Accuracy Precision Recall F Score
Logistic Regression 0.97 0.95 0.96 0.96
SVM 0.95 0.95 0.93 0.94
Decision Trees 0.86 0.84 0.80 0.82
Random Forest 0.94 0.93 0.90 0.92
Naive Bayes 0.90 0.87 0.85 0.86
K-Nearest Neighbor 0.91 0.85 0.91 0.88

Conclusion

I have tuned few parameters for example training and test size, random state and most of the algorithms performed close enough to each other. For different datasets this code can be used. You may need to change feature selection part and if your dataset has missing values you should fill in these values as well. Other than these things you can perform classification with different kind of algorithms.

Owner
Mert Sezer Ardal
Mert Sezer Ardal
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

ShawnWang 1 Nov 29, 2021
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Chris Santiago 0 Mar 30, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022