Nixtla is an open-source time series forecasting library.

Overview

Nixtla

Nixtla is an open-source time series forecasting library.

We are helping data scientists and developers to have access to open source state-of-the-art forecasting pipelines. For that purpose, we built a complete pipeline that can be deployed in the cloud using AWS and consumed via APIs or consumed as a service. If you want to set up your own infrastructure, follow the instructions in the repository (Azure coming soon).

You can use our fully hosted version as a service through our python SDK (autotimeseries). To consume the APIs on our own infrastructure just request tokens by sending an email to [email protected] or opening a GitHub issue. We currently have free resources available for anyone interested.

We built a fully open-source time-series pipeline capable of achieving 1% of the performance in the M5 competition. Our open-source solution has a 25% better accuracy than Amazon Forecast and is 20% more accurate than fbprophet. It also performs 4x faster than Amazon Forecast and is less expensive.

To reproduce the results: Open In Colab or you can read this Medium Post.

At Nixtla we strongly believe in open-source, so we have released all the necessary code to set up your own time-series processing service in the cloud (using AWS, Azure is WIP). This repository uses continuous integration and deployment to deploy the APIs on our infrastructure.

Python SDK Basic Usage

CI python sdk

Install

PyPI

pip install autotimeseries

How to use

Check the following examples for a full pipeline:

Basic usage

import os

from autotimeseries.core import AutoTS

autotimeseries = AutoTS(bucket_name=os.environ['BUCKET_NAME'],
                        api_id=os.environ['API_ID'],
                        api_key=os.environ['API_KEY'],
                        aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
                        aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'])

Upload dataset to S3

train_dir = '../data/m5/parquet/train'
# File with target variables
filename_target = autotimeseries.upload_to_s3(f'{train_dir}/target.parquet')
# File with static variables
filename_static = autotimeseries.upload_to_s3(f'{train_dir}/static.parquet')
# File with temporal variables
filename_temporal = autotimeseries.upload_to_s3(f'{train_dir}/temporal.parquet')

Each time series of the uploaded datasets is defined by the column item_id. Meanwhile the time column is defined by timestamp and the target column by demand. We need to pass this arguments to each call.

columns = dict(unique_id_column='item_id',
               ds_column='timestamp',
               y_column='demand')

Send the job to make forecasts

response_forecast = autotimeseries.tsforecast(filename_target=filename_target,
                                              freq='D',
                                              horizon=28,
                                              filename_static=filename_static,
                                              filename_temporal=filename_temporal,
                                              objective='tweedie',
                                              metric='rmse',
                                              n_estimators=170,
                                              **columns)

Download forecasts

autotimeseries.download_from_s3(filename='forecasts_2021-10-12_19-04-32.csv', filename_output='../data/forecasts.csv')

Forecasting Pipeline as a Service

Our forecasting pipeline is modular and built upon simple APIs:

tspreprocess

CI/CD tspreprocess Lambda CI/CD tspreprocess docker image

Time series usually contain missing values. This is the case for sales data where only the events that happened are recorded. In these cases it is convenient to balance the panel, i.e., to include the missing values to correctly determine the value of future sales.

The tspreprocess API allows you to do this quickly and easily. In addition, it allows one-hot encoding of static variables (specific to each time series, such as the product family in case of sales) automatically.

tsfeatures

CI/CD tsfeatures Lambda CI/CD tsfeatures docker image

It is usually good practice to create features of the target variable so that they can be consumed by machine learning models. This API allows users to create features at the time series level (or static features) and also at the temporal level.

The tsfeatures API is based on the tsfeatures library also developed by the Nixtla team (inspired by the R package tsfeatures) and the tsfresh library.

With this API the user can also generate holiday variables. Just enter the country of the special dates or a file with the specific dates and the API will return dummy variables of those dates for each observation in the dataset.

tsforecast

CI/CD tsforecast Lambda CI/CD tsforecast docker image

The tsforecast API is responsible for generating the time series forecasts. It receives as input the target data and can also receive static variables and time variables. At the moment, the API uses the mlforecast library developed by the Nixtla team using LightGBM as a model.

In future iterations, the user will be able to choose different Deep Learning models based on the nixtlats library developed by the Nixtla team.

tsbenchmarks

CI/CD tsbenchmarks Lambda CI/CD tsbenchmarks docker image

The tsbenchmarks API is designed to easily compare the performance of models based on time series competition datasets. In particular, the API offers the possibility to evaluate forecasts of any frequency of the M4 competition and also of the M5 competition.

These APIs, written in Python and can be consumed through an SDK also written in Python. The following diagram summarizes the structure of our pipeline:

Build your own time-series processing service using AWS

Why ?

We want to contribute to open source and help data scientists and developers to achieve great forecasting results without the need to implement complex pipelines.

How?

If you want to use our hosted version send us an email or open a github issue and ask for API Keys.

If you want to deploy Nixtla on your own AWS Cloud you will need:

  • API Gateway (to handle API calls).
  • Lambda (or some computational unit).
  • SageMaker (or some bigger computational unit).
  • ECR (to store Docker images).
  • S3 (for inputs and outputs).

You will end with an architecture that looks like the following diagram

Each call to the API executes a particular Lambda function depending on the endpoint. That particular lambda function instantiates a SageMaker job using a predefined type of instance. Finally, SageMaker reads the input data from S3 and writes the processed data to S3, using a predefined Docker image stored in ECR.

Run the API locally

  1. Create the environment using make init.
  2. Launch the app using make app.

Create AWS resources

Create S3 buckets

For each service:

  1. Create an S3 bucket. The code of each lambda function will be uploaded here.

Create ECR repositorires

For each service:

  1. Create a private repository for each service.

Lambda Function

For each service:

  1. Create a lambda function with Python 3.7 runtime.
  2. Modify the runtime setting and enter main.handler in the handler.
  3. Go to the configuration:
    • Edit the general configuration and add a timeout of 9:59.
    • Add an existing role capable of reading/writing from/to S3 and running Sagemaker services.
  4. Add the following environment variables:
    • PROCESSING_REPOSITORY_URI: ECR URI of the docker image corresponding to the service.
    • ROLE: A role capable of reading/writing from/to S3 and also running Sagemaker services.
    • INSTANCE_COUNT
    • INSTANCE_TYPE

API Gateway

  1. Create a public REST API (Regional).
  2. For each endpoint in api/main.py… add a resource.
  3. For each created method add an ANY method:
    • Select lambda function.
    • Select Use Lambda Proxy Integration.
    • Introduce the name of the lambda function linked to that resource.
    • Once the method is created select Method Request and set API key required to true.
  4. Deploy the API.

Usage plan

  1. Create a usage plan based on your needs.
  2. Add your API stage.

API Keys

  1. Generate API keys as needed.

Deployment

GitHub secrets

  1. Set the following secrets in your repo:
    • AWS_ACCESS_KEY_ID
    • AWS_SECRET_ACCESS_KEY
    • AWS_DEFAULT_REGION
Owner
Nixtla
Open Source Time Series Forecasting
Nixtla
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023