Style-based Neural Drum Synthesis with GAN inversion

Overview

Style-based Drum Synthesis with GAN Inversion Demo

TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the paper Adversarial Synthesis of Drum Sounds @ The 2020 DAFx Conference.

neural drum synthesis

Code

Dependencies

Python

Code has been developed with Python 3.6.13. It should work with other versions of Python 3, but has not been tested. Moreover, we rely on several third-party libraries, listed in requirements.txt. They can be installed with

$ pip install -r requirements.txt

Checkpoints

The tensorflow checkpoints for loading pre-trained network weights can be download here. Unzip the folder and save it into this projects directory: "style-drumsynth/checkpoints".

Usage

The code is contained within the ads_demo.py script, which enables conditional synthesises of drum sounds using a pretrained generator.

The following control parameters are available:

  • Condition: which type of drum to generation (kick, snare or hat)
  • Direction: "features", which principal direction to move in
  • Direction slider: How far to move in a particular direction
  • Number of generations: How many drums to generate
  • Stocastic Variation: Amount of inconsequential noise to inject into the generator
  • Randomize: Generate by randomly sampling the latent space, or generate from a fixed, pre-computed latent vectors for a kick, snare and hat
  • Encode: regenerate drum sounds stored in the ads_demo/input_audio

Generations are saved in the ads_demo/generations folder. Pretrained model weights are saved in the ads_demo/checkpoints folder.

train.py arguments

  -c CONDITION,           --condition CONDITION
                            0: kick, 1: snare, 2:hat
  -d DIRECTION,           --direction DIRECTION
                            synthesis controls [0:4]
  -ds DIRECTION_SLIDER,   --direction_slider DIRECTION_SLIDER
                            how much to move in a particular direction
  -n NUM_GENERATIONS,     --num_generations NUM_GENERATIONS
                            number of examples to generate
  -v STOCASTIC_VARIATION, --stocastic_variation STOCASTIC_VARIATION
                            amount of inconsequential noise injected
  -r RANDOMIZE,           --randomize RANDOMIZE
                            if set to False, a fixed latent vector is used to generate a drum sound from each condition
  -e ENCODE,              --encode ENCODE
                            regenerates drum sounds from encoder folder

Supporting webpage

For more information, please visit the corresponding supporting website.

It contains the following:

  • Audio examples
  • Training data
  • Generations
  • Example usage within loop-based electronic music compositions
  • Generating Drum Loops
  • Interpolation demonstration
  • Supplementary figures
  • A link to the DAFx 2020 paper and presentation

References

[1] Drysdale, J., M. Tomczak, J. Hockman, Adversarial Synthesis of Drum Sounds. Proceedings of the 23rd International Conference on Digital Audio Effects (DAFX), 2020.
@inproceedings{drysdale2020ads,
  title={Adversarial synthesis of drum sounds},
  author={Drysdale, Jake and Tomczak, Maciek and Hockman, Jason},
  booktitle = {Proceedings of the International Conference on Digital Audio Effects (DAFx)},
  year={2020}
}

Help

Any questions please feel free to contact me on [email protected]

Owner
Sound and Music Analysis (SoMA) Group
The Sound and Music Analysis (SoMA) Group in the Digital Media Technology Laboratory at Birmingham City University.
Sound and Music Analysis (SoMA) Group
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022