HybVIO visual-inertial odometry and SLAM system

Overview

HybVIO

A visual-inertial odometry system with an optional SLAM module.

This is a research-oriented codebase, which has been published for the purposes of verifiability and reproducibility of the results in the paper:

  • Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylilammi, Esa Rahtu, and Arno Solin (2022). HybVIO: Pushing the limits of real-time visual-inertial odometry. In IEEE Winter Conference on Applications of Computer Vision (WACV).
    [arXiv pre-print] | [video]

It can also serve as a baseline in VIO and VISLAM benchmarks. The code is not intended for production use and does not represent a particularly clean or simple way of implementing the methods described in the above paper. The code contains numerous feature flags and parameters (see codegen/parameter_definitions.c) that are not used in the HybVIO but may (or may not) be relevant in other scenarios and use cases.

HybVIO EuRoC

Setup

Here are basic instructions for setting up the project, there is some more detailed help included in the later sections (e.g., for Linux).

  • Install CMake, glfw and ffmpeg, e.g., by brew install cmake glfw ffmpeg.
  • Clone this repository with the --recursive option (this will take a while)
  • Build dependencies by running cd 3rdparty/mobile-cv-suite; ./scripts/build.sh
  • Make sure you are using clang to compile the C++ sources (it's the default on Macs). If not default, like on many Linux Distros, you can control this with environment variables, e.g., CC=clang CXX=clang++ ./scripts/build.sh
  • (optional) In order to be able to use the SLAM module, run ./slam/src/download_orb_vocab.sh

Then, to build the main and test binaries, perform the standard CMake routine:

mkdir target
cd target
cmake -DBUILD_VISUALIZATIONS=ON -DUSE_SLAM=ON ..
# or if not using clang by default:
# CC=clang CXX=clang++ cmake ..
make

Now the target folder should contain the binaries main and run-tests. After making changes to code, only run make. Tests can be run with the binary run-tests.

To compile faster, pass -j argument to make, or use a program like ccache. To run faster, check CMakeLists.txt for some options.

Arch Linux

List of packages needed: blas, cblas, clang, cmake, ffmpeg, glfw, gtk3, lapack, python-numpy, python-matplotlib.

Debian

On Debian Stretch, had to install (some might be optional): clang, libc++-dev, libgtk2.0-dev, libgstreamer1.0-dev, libvtk6-dev, libavresample-dev.

Raspberry Pi/Raspbian

On Raspbian (Pi 4, 8 GiB), had to install at least: libglfw3-dev and libglfw3 (for accelerated arrays) and libglew-dev and libxkbcommon-dev (for Pangolin, still had problems). Also started off with the Debian setup above.

Benchmarking

EuroC

To run benchmarks on EuroC dataset and reproduce numbers published in https://arxiv.org/abs/2106.11857, follow the instructions in https://github.com/AaltoML/vio_benchmark/tree/main/hybvio_runner.

If you want to test the software on individual EuRoC datasets, you can follow this subset of instructions

  1. In vio_benchmark root folder, run python convert/euroc_to_benchmark.py to download and convert to data
  2. Symlink that data here: mkdir -p data && cd data && ln -s /path/to/vio_benchmark/data/benchmark .

Then you can run inividual EuRoC sequences as, e.g.,

./main -i=../data/benchmark/euroc-v1-02-medium -p -useStereo

ADVIO

  1. Download the ADVIO dataset as instructed in https://github.com/AaltoVision/ADVIO#downloading-the-data and extract all the .zip files somewhere ("/path/to/advio").
  2. Run ./scripts/convert/advio_to_generic_benchmark.sh /path/to/advio
  3. Then you can run ADVIO sequences either using their full path (like in EuRoC) or using the -j shorthand, e.g., ./main -j=2 for ADVIO-02.

The main binary

To run the algorithm on recorded data, use ./main -i=path/to/datafolder, where datafolder/ must at the very least contain a data.{jsonl|csv} and data.{mp4|mov|avi}. Such recordings can be created with

Some common arguments to main are:

  • -p: show pose visualization.
  • -c: show video output.
  • -useSlam: Enable SLAM module.
  • -useStereo: Enable stereo.
  • -s: show 3d visualization. Requires -useSlam.
  • -gpu: Enable GPU acceleration

You can get full list of command line options with ./main -help.

Key controls

These keys can be used when any of the graphical windows are focused (see commandline/command_queue.cpp for full list).

  • A to pause and toggle step mode, where a key press (e.g., SPACE) processes the next frame.
  • Q or Escape to quit
  • R to rotate camera window
  • The horizontal number keys 1,2,… toggle methods drawn in the pose visualization.

When the command line is focused, Ctrl-C aborts the program.

Copyright

Licensed under GPLv3. For different (commercial) licensing options, contact us at https://www.spectacularai.com/

Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022