K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

Overview

KCP

License Build

The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for publication in the IEEE Robotics and Automation Letters (RA-L).

KCP is an efficient and effective local point cloud registration approach targeting for real-world 3D LiDAR scan matching problem. A simple (and naive) understanding is: ICP iteratively considers the closest point of each source point, but KCP considers the k closest points of each source point in the beginning, and outlier correspondences are mainly rejected by the maximum clique pruning method. KCP is written in C++ and we also support Python binding of KCP (pykcp).

For more, please refer to our paper:

  • Yu-Kai Lin, Wen-Chieh Lin, Chieh-Chih Wang, KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching. To appear in IEEE Robotics and Automation Letters (RA-L), 2022. (pdf) (code) (video)

If you use this project in your research, please cite:

@article{lin2022kcp,
  title={{KCP: k-Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching}},
  author={Lin, Yu-Kai and Lin, Wen-Chieh and Wang, Chieh-Chih},
  journal={IEEE Robotics and Automation Letters},
  volume={#},
  number={#},
  pages={#--#},
  year={2022},
}

and if you find this project helpful or interesting, please Star the repository. Thank you!

Table of Contents

📦 Resources

⚙️ Installation

The project is originally developed in Ubuntu 18.04, and the following instruction supposes that you are using Ubuntu 18.04 as well. I am not sure if it also works with other Ubuntu versions or other Linux distributions, but maybe you can give it a try 👍

Also, please feel free to open an issue if you encounter any problems of the following instruction.

Step 1. Preparing the Dependencies

You have to prepare the following packages or libraries used in KCP:

  1. A C++ compiler supporting C++14 and OpenMP (e.g. GCC 7.5).
  2. CMake3.11
  3. Git
  4. Eigen3 ≥ 3.3
  5. nanoflann
  6. TEASER++d79d0c67

GCC, CMake, Git, and Eigen3

sudo apt update
sudo apt install -y g++ build-essential libeigen3-dev git

sudo apt install -y software-properties-common lsb-release
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | sudo tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
sudo apt update
sudo apt install cmake

nanoflann

cd ~
git clone https://github.com/jlblancoc/nanoflann
cd nanoflann
mkdir build && cd build
cmake .. -DNANOFLANN_BUILD_EXAMPLES=OFF -DNANOFLANN_BUILD_TESTS=OFF
make
sudo make install

TEASER++

cd ~
git clone https://github.com/MIT-SPARK/TEASER-plusplus
cd TEASER-plusplus
git checkout d79d0c67
mkdir build && cd build
cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON_BINDINGS=OFF -DBUILD_DOC=OFF
make
sudo make install

Step 2. Preparing Dependencies of Python Binding (Optional)

The Python binding of KCP (pykcp) uses pybind11 to achieve operability between C++ and Python. KCP will automatically download and compile pybind11 during the compilation stage. However, you need to prepare a runable Python environment with header files for the Python C API (python3-dev):

sudo apt install -y python3 python3-dev

Step 3. Building KCP

Execute the following commands to build KCP:

Without Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake ..
make

With Python Binding

git clone https://github.com/StephLin/KCP
cd KCP
mkdir build && cd build
cmake .. -DKCP_BUILD_PYTHON_BINDING=ON -DPYTHON_EXECUTABLE=$(which python3)
make

Step 4. Installing KCP to the System (Optional)

This will make the KCP library available in the system, and any C++ (CMake) project can find the package by find_package(KCP). Think twice before you enter the following command!

# Under /path/to/KCP/build
sudo make install

🌱 Examples

We provide two examples (one for C++ and the other for Python 3) These examples take nuScenes' LiDAR data to perform registration. Please check

for more information.

📝 Some Remarks

Tuning Parameters

The major parameters are

  • kcp::KCP::Params::k and
  • kcp::KCP::Params::teaser::noise_bound,

where k is the number of nearest points of each source point selected to be part of initial correspondences, and noise_bound is the criterion to determine if a correspondence is correct. In our paper, we suggest k=2 and noise_bound the 3-sigma (we use noise_bound=0.06 meters for nuScenes data), and those are default values in the library.

To use different parameters to the KCP solver, please refer to the following snippets:

C++

#include <kcp/solver.hpp>

auto params = kcp::KCP::Params();

params.k                  = 2;
params.teaser.noise_bound = 0.06;

auto solver = kcp::KCP(params);

Python

import pykcp

params = pykcp.KCPParams()
params.k = 2
params.teaser.noise_bound = 0.06

solver = pykcp.KCP(params)

Controlling Computational Cost

Instead of correspondence-free registration in TEASER++, KCP considers k closest point correspondences to reduce the major computational cost of the maximum clique algorithm, and we have expressed the ability for real-world scenarios without any complicate or learning-based feature descriptor in the paper. However, it is still possible to encounter computational time or memory issue if there are too many correspondences fed to the solver.

We suggest controlling your keypoints around 500 for k=2 (in this way the computational time will be much closer to the one presented in the paper).

Torwarding Global Registration Approaches

It is promising that KCP can be extended to a global registration approach if a fast and reliable sparse feature point representation method is employed.

In this way, the role of RANSAC, a fast registration approach usually used in learning based approaches, is similar to KCP's, but the computation results of KCP are deterministic, and also, KCP has better theoretical supports.

🎁 Acknowledgement

This project refers to the computation of the smoothness term defined in LOAM (implemented in Tixiao Shan's excellent project LIO-SAM, which is licensed under BSD-3). We modified the definition of the smoothness term (and it is called the multi-scale curvature in this project).

Owner
Yu-Kai Lin
Studying for a master program of Computer Science in NCTU, Taiwan.
Yu-Kai Lin
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022