MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

Overview

MemStream

Implementation of

MemStream detects anomalies from a multi-aspect data stream. We output an anomaly score for each record. MemStream is a memory augmented feature extractor, allows for quick retraining, gives a theoretical bound on the memory size for effective drift handling, is robust to memory poisoning, and outperforms 11 state-of-the-art streaming anomaly detection baselines.

After an initial training of the feature extractor on a small subset of normal data, MemStream processes records in two steps: (i) It outputs anomaly scores for each record by querying the memory for K-nearest neighbours to the record encoding and calculating a discounted distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update threshold β.

Demo

  1. KDDCUP99: Run python3 memstream.py --dataset KDD --beta 1 --memlen 256
  2. NSL-KDD: Run python3 memstream.py --dataset NSL --beta 0.1 --memlen 2048
  3. UNSW-NB 15: Run python3 memstream.py --dataset UNSW --beta 0.1 --memlen 2048
  4. CICIDS-DoS: Run python3 memstream.py --dataset DOS --beta 0.1 --memlen 2048
  5. SYN: Run python3 memstream-syn.py --dataset SYN --beta 1 --memlen 16
  6. Ionosphere: Run python3 memstream.py --dataset ionosphere --beta 0.001 --memlen 4
  7. Cardiotocography: Run python3 memstream.py --dataset cardio --beta 1 --memlen 64
  8. Statlog Landsat Satellite: Run python3 memstream.py --dataset statlog --beta 0.01 --memlen 32
  9. Satimage-2: Run python3 memstream.py --dataset satimage-2 --beta 10 --memlen 256
  10. Mammography: Run python3 memstream.py --dataset mammography --beta 0.1 --memlen 128
  11. Pima Indians Diabetes: Run python3 memstream.py --dataset pima --beta 0.001 --memlen 64
  12. Covertype: Run python3 memstream.py --dataset cover --beta 0.0001 --memlen 2048

Command line options

  • --dataset: The dataset to be used for training. Choices 'NSL', 'KDD', 'UNSW', 'DOS'. (default 'NSL')
  • --beta: The threshold beta to be used. (default: 0.1)
  • --memlen: The size of the Memory Module (default: 2048)
  • --dev: Pytorch device to be used for training like "cpu", "cuda:0" etc. (default: 'cuda:0')
  • --lr: Learning rate (default: 0.01)
  • --epochs: Number of epochs (default: 5000)

Input file format

MemStream expects the input multi-aspect record stream to be stored in a contains , separated file.

Datasets

Processed Datasets can be downloaded from here. Please unzip and place the files in the data folder of the repository.

  1. KDDCUP99
  2. NSL-KDD
  3. UNSW-NB 15
  4. CICIDS-DoS
  5. Synthetic Dataset (Introduced in paper)
  6. Ionosphere
  7. Cardiotocography
  8. Statlog Landsat Satellite
  9. Satimage-2
  10. Mammography
  11. Pima Indians Diabetes
  12. Covertype

Environment

This code has been tested on Debian GNU/Linux 9 with a 12GB Nvidia GeForce RTX 2080 Ti GPU, CUDA Version 10.2 and PyTorch 1.5.

Owner
Stream-AD
Streaming Anomaly Detection
Stream-AD
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022