GLM (General Language Model)

Related tags

Deep LearningGLM
Overview

GLM

GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language understanding and generation tasks.

Please refer to our paper for a detailed description of GLM:

All NLP Tasks Are Generation Tasks: A General Pretraining Framework

Zhengxiao Du*, Yujie Qian*, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, Jie Tang (*: equal contribution)

Part of the code is based on Megatron-LM and PET.

Pretrained Models

You can download the pretrained models used in the paper here.

Name Params File Config
GLM-Base 110M glm-base-blank.tar.bz2 model_blocklm_base.sh
GLM-Large 335M glm-large-blank.tar.bz2 model_blocklm_large.sh
GLM-Large (multi-task) 335M glm-large-generation.tar.bz2 model_blocklm_large_generation.sh
GLM-410M (multi-task) 410M glm-1.25-generation.tar.bz2 model_blocklm_1.25_generation.sh
GLM-515M (multi-task) 515M glm-1.5-generation.tar.bz2 model_blocklm_1.5_generation.sh
GLM-RoBERTa 335M glm-roberta-large-blank.tar.bz2 model_blocklm_roberta_large.sh

Installation

Clone this repo

git clone https://github.com/THUDM/GLM
cd GLM

Please first install PyTorch (we use 1.7.0) and apex, and then install other dependencies by

pip install -r requirements.txt

Usage

We provide scripts for finetuning GLM on some downstream tasks.

SuperGLUE

  • Download the SuperGlue data and check the experiment setup in scripts/finetune_superglue.sh. Note that DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH need to be changed to your local path. You may also change the batch-size and nproc_per_node according to your available hardware. We suggest to use aggregated batch size 64 for MultiRC and ReCORD and 16 for other tasks.

  • Run the following script (use the COPA dataset as an example)

bash scripts/finetune_superglue.sh \
     config_tasks/model_blocklm_roberta_large.sh \
     config_tasks/task_copa.sh
  • To apply GLM to a new NLU dataset with cloze-filling finetuning, implement a DataProcessor in tasks/superglue/dataset.py for data loading and add a PVP in tasks/superglue/pvp.py for the cloze question. More details can be found here.

  • The cloze questions (prompts) used in this work are written by human. We are also studying a P-tuning (prompt tuning) approach to search for the optimal continuous prompt. Please refer to our paper and code.

Text Summarization

  • Download the Gigaword dataset and check the experiment setup in scripts/finetune_seq2seq.sh. Change DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH to your local path.

  • Run the following script

bash scripts/finetune_seq2seq.sh \ 
     config_tasks/model_blocklm_large_generation.sh \ 
     config_tasks/seq_gigaword.sh
  • For calculating rouge, install file2rouge from here and run bash scripts/evaluate_seq2seq.sh

Language Modeling

LAMBADA Cloze Accuracy

bash scripts/evaluate_lm.sh \ 
     config_tasks/model_blocklm_large_generation.sh \
     config_tasks/zero_lambada.sh 

LM Perplexity

  • Download our test set of wikibook (or any dataset following the same format) and change DATA_ROOT, CHECKPOINT_PATH in scripts/evaluate_lm.sh
  • Run the following script
    bash scripts/evaluate_lm.sh \ 
       config_tasks/model_blocklm_large_generation.sh \
       config_tasks/zero_lm.sh 

Blank Language Model

  • Download the Yahoo dataset and check the experiment setup in scripts/finetune_blank.sh. Change DATA_ROOT, CHECKPOINT_PATH, SAVE_PATH to your local path.

  • Run the following script

bash scripts/finetune_blank.sh \ 
     config_tasks/model_blocklm_large.sh \ 
     config_tasks/seq_blank.sh

Blank Filling (Interactive)

  • Change CHECKPOINT_PATH to your local path. Run the following script
bash scripts/generate_block.sh \
     config_tasks/model_blocklm_large.sh

Example:

Context: Ng is an adjunct professor at [MASK] (formerly associate professor and Director of its Stanford AI Lab or SAIL ). Also a pioneer in online education, Ng co-founded Coursera and deeplearning.ai.

GLM: [CLS] ng is an adjunct professor at [MASK] ( formerly associate professor and director of its stanford ai lab or sail ) . also a pioneer in online education , ng co - founded coursera and deeplearning . ai . [PAD] <|startofpiece|> the stanford university

Citation

Please cite our paper if you find this code useful for your research:

@article{DBLP:journals/corr/abs-2103-10360,
  author    = {Zhengxiao Du and
               Yujie Qian and
               Xiao Liu and
               Ming Ding and
               Jiezhong Qiu and
               Zhilin Yang and
               Jie Tang},
  title     = {All {NLP} Tasks Are Generation Tasks: {A} General Pretraining Framework},
  journal   = {CoRR},
  volume    = {abs/2103.10360},
  year      = {2021},
  url       = {https://arxiv.org/abs/2103.10360}
}
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023