A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

Overview

PyPI - Python Version Test Coverage

RunMany

Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About

A tool to run many programs written in many languages from one file.

Suppose you want to practice multiple programming languages at once. Normally you'd have to juggle multiple files or multiple projects, perhaps multiple IDEs. RunMany lets you write multiple programs in the same file using any programming languages you want, and then run them all at once.

For example, give RunMany this simple file

Python:
    print("Hi")
JavaScript:
    console.log("Hi")
Rust:
    fn main() {
        println!("Hi");
    }

and it will number and run each program, giving this output:

************************************************************
1. Python
-------------------- output from line 1 --------------------
Hi


************************************************************
2. JavaScript
-------------------- output from line 3 --------------------
Hi


************************************************************
3. Rust
-------------------- output from line 5 --------------------
Hi


************************************************************
3/3 programs successfully run!
3/3 had the exact same stdout!
************************************************************

In general, RunMany can be used for:

  • Chrestomathy - Writing identically behaving programs in many languages, like on Rosetta Code. (example/output)
  • Performance Testing - Timing different implementations of a program, even across languages. (example/output)
  • Input Testing - Easily giving many combinations of argv or stdin to programs. (example/output)
  • Polyglots - Making esoteric code that can be executed in multiple languages at once. (example/output)

Overall it is hopefully a good tool for anyone who wants to play with multiple programming languages at once.

Installation (supports Python 3.6+)

pip install runmany

If that doesn't work try pip3 install runmany or python -m pip install runmany or python3 -m pip install runmany.

PyPI Package Page | Bleeding edge version on TestPyPI

VSCode Extension

The RunMany VSCode extension adds syntax highlighting to RunMany files and makes them runnable with one button. It is highly recommended for use with RunMany.

With and without syntax highlighting:

syntax highlighting example

Get VSCode here and get the RunMany extension here, or install it directly once you have VSCode with:

code --install-extension discretegames.runmany

Usage

Running From Command Line

runmany myfile.many

More generally:

runmany [-h --help] [-j --json <settings-file>] [-o --output <output-file>] <input-file>
  • <input-file> is the required .many file to run.
  • <settings-json> is the optional .json file that defines how languages are run and how the output is formatted.
  • <output-file> is the optional file to send the output to. When omitted output goes to stdout.

When a settings JSON file is not provided, the hardcoded settings JSON at the top of the .many file is used. If neither is present, or for any missing settings, default_settings.json is used as a fallback.

See the examples folder for some .many files to try. Note that RunMany expects the system to already have the necessary interpreters and compilers installed for the programming languages it runs. RunMany runs them internally with normal console commands.

RunMany has preset commands for a number of languages:

Ada, C, C#, C++, Dart, Fortran, Go, Groovy, Haskell, Java, JavaScript, Julia, Kotlin, Lisp, Lua, Pascal, Perl, PHP, Python, Python 2, R, Racket, Ruby, Rust, Scala, TypeScript, VBScript, and Visual Basic

But these presets were made for a Windows machine and may fail depending on OS and system configuration. However, commands can be overridden and new languages can be added by modifying the settings JSON. See more below.

Running From Python

from runmany import runmany, runmany_to_s, runmany_to_f

# Run to stdout
runmany('path/to/input.many', 'path/to/settings.json') # settings JSON is always optional

# Run to output file
runmany('path/to/input.many', 'path/to/settings.json', 'path/to/output.txt')

# Run to string
string = runmany_to_s('path/to/input.many', 'path/to/settings.json')

# Run to file object
with open('output.txt', 'w') as file_obj:
    runmany_to_f(file_obj, 'path/to/input.many', 'path/to/settings.json')

As with the command line, the settings JSON provided as an argument takes precedence over the one that may be at the top of the .many file, and default_settings.json is used as a fallback for all settings.

In each of the 3 runmany functions, the settings JSON argument may be given as a path to the .json file or a JSON-like Python dictionary.

Additionally, the .many file contents may be given as a string rather than a file path with from_string=True.

The function runmany.cmdline, which takes a list of command line arguments, is also present as an alternative to using the command line directly.

.many Syntax

The .many file format is what RunMany expects when given a file to run. (Though, of course, ".many" is not required as an extension.)

Principally, a .many file consists of unindented lines which are section headers that define the languages and context for the lines indented below them. Languages are given as a comma separated list and the 3 contexts are argv, stdin, and code. Section headers end with a colon.

Argv for Python, JavaScript:
    foo
Stdin for Python:
    bar
Python:
    import sys
    print(sys.argv[1] + input())  # will be "foobar"
JavaScript:
    console.log(process.argv[2])  // will be "foo"

The keywords Argv and Stdin are used to define the argument vector and standard input for a set of languages. Otherwise the section is assumed to be code.

So the RunMany program above will send "foo" to Python and JavaScript on argv, and "bar" to Python on stdin when it runs each language's code.

Importantly, a .many file always runs from top to bottom just-in-time, that is, the top lines will run normally even if the bottom lines are invalid syntax. For this reason, argv and stdin sections only apply to code sections that come after them.

Those are the essentials but read on for more details and nuance about the syntax of .many files. Notably the Also Section and hardcoded settings.

Also check syntax.many and the other examples for concrete syntax samples.

Syntax Specifics


Comments

% at the very start of a line makes an inline comment.

% this is a comment

There are no block comments.


Section Syntax

A .many file can be split up into sections, each of which has an unindented header line that ends in a colon (:), and a potentially multiline string of content that can appear after the colon and on indented lines below the header. Each indent must be either a single tab or 4 spaces and the indents do not end up as part of the section content.

Any whitespace just after the colon of the section header is ignored, so this is a working Code Section:

Python: import math
    print(math.pi)

As it corresponds to the Python program:

import math
print(math.pi)

Blank lines above or below sections are only for readability and not required.

As detailed below, only a few types of sections exist and some require comma (,) separated language lists in their headers. Language names are stripped of whitespace and matched to corresponding "name" keys in the languages arrays of the settings JSON.

Language names are not case-sensitive (Python is the same as python) but other keywords like Argv, Stdin, for, Also, and Exit are.

Language names cannot contain , or : and to be safe they should not start with Argv, Stdin, Also, Exit, or !.


Code Section

A Code Section starts right out with a comma separated list of languages and its content is the program to be run in those languages.

One language in the list is almost always sufficient unless you are writing polyglots,

JavaScript:
    console.log('This is some code that will be run in JS.')
Python, Python 2:
    print('This is some code that will be run in Python 3 and then Python 2.')

Argv Section

An Argv Section can either start Argv: to apply to all languages, or Argv for Language1, Language2, ...: to apply to the listed languages. Either way overwrites any previous argv set for those languages, but Also Sections can be used to supply a series of argvs.

The Argv Section's content is stripped of newlines and sent as the argument vector to all the subsequent programs in Code Sections it applies to.

Argv:
    argv sent to all languages
Argv for Python, JavaScript:
    argv specifically sent to Python and Javascript

For argv to work the $argv placeholder must be placed properly into the command of the language.


Stdin Section

Almost exactly like an Argv Section but for stdin.

A Stdin Section can either start Stdin: to apply to all languages, or Stdin for Language1, Language2, ...: to apply to the listed languages. Either way overwrites any previous stdin set for those languages, but Also Sections can be used to supply a series of stdins.

The Stdin Section's content is stripped of trailing newlines except one and sent as the standard input stream to all the subsequent programs in Code Sections it applies to.

Stdin:
    stdin sent to all languages
Stdin for Python, JavaScript:
    stdin specifically sent to Python and Javascript

When a program expects stdin but there is no Stdin Section to give it, the stdin can be typed into the console normally.


Also Section

An Also Section starts with Also: (with no language list) and is a way to add a series of argvs or stdins to run, or to avoid repeating a Code Section header. It cannot be the first section in the file because it needs to attach to the Code, Stdin, or Argv Section above it.

When below an Argv Section or Stdin Section, an Also Section adds an additional input to the list of argvs or stdins to run when applicable Code Sections are encountered.

For example, the final Python program here is run 6 times for all the combinations of argvs and stdins that apply to it (1A 1B 2A 2B 3A 3B):

Argv: 1
Also: 2
Also: 3

Stdin: A
Also:  B

Python:
    import sys
    print(sys.argv[1] + input())

This is the real power of the Also Section -- giving multiple argvs and stdins to a program without repeating code. Another example with output.

When below a Code Section, an Also Section is simply shorthand for repeating the Code Section's header.

For example, Also: here behaves exactly the same as Python, Python 2: would:

Python, Python 2:
    print(123)
Also:
    print(456)
Also:
    print(789)

Disabling Sections

Putting ! at the very start of any section header will disable that section and any Also Sections attached to it.

!Python:
    # this is disabled
Also:
    # this is effectively disabled too
!Also:
    # this is disabled in two ways

Hardcoded Settings

A settings JSON may be placed, indented, before the first section in a .many file. It is only used if a custom setting JSON is not otherwise provided as an argument, and only for the .many file it is in. As with section content, the indents may be either single tabs or 4 spaces.

    {
        "show_time": true,
        "show_command": true
    }
Python:
    print('The time and command will now be shown.')

Exit Command

Exit. at the very start of a line by itself will stop RunMany as if the file ended there.

Exit.
% nothing from here on will be run

Settings JSON

The settings JSON defines what languages RunMany can run and how it will run them. It also defines how the RunMany output will be formatted.

As mentioned, default_settings.json holds the default values for all settings which are automatically used if not otherwise present in a provided or hardcoded JSON.

Most settings are simple flags or values that can be set in the base settings JSON object. See List of Settings below.

The setting to add a custom language is the "languages" key which maps to an array of JSON objects we'll call language objects. Each language object must have a "name" string to identify it and a "command" string to run it (see command format). However, objects in "languages" with a matching "name" in the "default_languages" array will automatically inherit its other values, such as "command" and "ext". Most settings that can be set in the base settings JSON object are also inherited by the language objects and can be overridden.

For example, a settings JSON of

{
    "languages": [{ "name": "Rust", "timeout": 5.0 }],
    "show_code": true
}

will make Rust programs have a 5 second time limit rather than the default of 10, and "command" does not need to be present because Rust is already in the built-in "default_languages" array. The "show_code": true in the base object makes it so all languages in the RunMany output will show their code.

You should not have to set "default_languages" in your custom settings JSON (though technically you can). Only set "languages".

List of Settings

All settings described and whether or not they they can be overridden in a language object in the "languages" array:

JSON Key Type Default Overridable Description
"timeout" float 10.0 yes The time limit of each program in seconds.
"stderr" string "nzec" yes "always" or true to always combine program stderr streams with stdout. "never" or false to always hide program stderr streams. "nzec" or null to only show stderr streams when programs have non-zero exit codes.
"ext" string "" yes The file extension of a language including the dot. Best to always define in the language object.
"spacing" int 1 yes The number of blank lines to add after each run. Note that trailing newlines are not stripped from stdouts.
"show_time" bool false yes Whether the execution time of each program is shown.
"show_command" bool false yes Whether the command used to run each program is shown. Useful for debugging command setup for new languages.
"show_code" bool false yes Whether the source code of the program is shown.
"show_argv" bool true yes Whether the argv for the program is shown (when present and non-empty).
"show_stdin" bool true yes Whether the stdin for the program is shown (when present and not all empty lines).
"show_output" bool true yes Whether the output for the program is shown. This includes the stdout, and, depending on the "stderr" setting, the stderr.
"show_errors" bool true no Whether RunMany errors like !!!| RunMany Error: ... |!!! are sent to stderr or silenced.
"show_runs" bool true no Whether the list of runs is shown. This is usually the bulk of the output.
"show_stats" bool true no Whether the success and failure counts are shown after everything has run.
"show_equal" bool true no Whether the matching stdouts are compared and grouped after everything has run.

Command Format

The "command" key of a language object in the "languages" array defines the terminal command that is run to execute the language.

Placeholders like $file and $dir are used in a command to refer to the temporary file RunMany creates for the code of each program it runs, or the directory that file is stored in:

Placeholder Portion of .../dir/file.ext
$rawdir .../dir
$dir ".../dir"
$rawfile .../dir/file.ext
$file ".../dir/file.ext"
$rawbranch .../dir/file
$branch ".../dir/file"
$name file.ext
$stem file
$ext .ext
$sep / (OS specific)
$argv n/a - the argv is inserted here

Note that some placeholders are "quoted" and some are not. Some operating systems like Windows may have spaces in the path to temporary files so correct quoting is important.

If $ is not present anywhere in the command string, $file $argv is appended to it. For example, the command python is implicitly python $file $argv.

Check the "default_languages" array in default_settings.json for more examples of commands.

About

I was driven to make RunMany by my desire to learn more programming languages combined with my annoyance that whenever I tried I would invariably have to make a whole new project for that language, or even switch IDEs.

I plan to use it to practice solving code challenges in multiple languages from code challenge websites.

Check out some of my other Python packages.

Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022