Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Related tags

Deep Learningtzer
Overview


ArtifactReproduce BugsQuick StartInstallationExtend Tzer

Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation

This is the source code repo for "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation" (Conditionally accepted by OOPSLA'22).

Artifact

Please check here for detailed documentation of the artifact prepared for OOPSLA'22.

Reproduce Bugs

Till submission, Tzer has been detected 40 bugs for TVM with 30 confirmed and 24 fixed (merged in the latest branch). Due to the anonymous review policy of OOPSLA, the links of actual bug reports will be provided after the review process.

We provide strong reproducibility of our work. To reproduce all bugs, all you need to do is a single click Open In Colab on your browser. Since some bugs need to be triggered by some complex GPU settings, to maximumly ease the hardware and software effort, the bugs are summarized in a Google Colab environment (No GPU required, but just a browser!).

Quick Start

You can easily start using Tzer with docker.

docker run --rm -it tzerbot/oopsla

# Inside the image.
cd tzer
python3 src/main_tir.py --fuzz-time 10     --report-folder ten-minute-fuzz
#                       run for 10 min.    bugs in folder `ten-minute-fuzz`

Successful installation looks like:

Report folder contents [click to expand]
  • cov_by_time.txt: a csv file where columns means "time" (second) and edge coverage;
  • ${BUG_TYPE}_${BUG_ID}.error_message.txt: error message snapshot of failures;
  • ${BUG_TYPE}_${BUG_ID}.ctx: context data to reproduce bugs (stored in Pickle. See config.py)
  • meta.txt: metadata including git version of TVM and experiment time;
  • tir_by_time.pickle: generated <F, P> (i.e., TIR and Passes) files (if TIR_REC=1 is set);
  • valid_seed_new_cov_count.txt: number of generated valid tests with new coverage;
Main commandline options [click to expand]

Commandline options (added as tail of commands):

  • --fuzz-time: Time budget of fuzzing (minute);
  • --tolerance: Parameter $N_{max}$ in the paper (control the interleaving of IR and pass mutation);
  • --report-folder: Path to store results (e.g., coverage trend);

Environment variables to control the algorithm options (added the prefix of commands):

  • PASS=1 to enable pass mutation;
  • NO_SEEDS=1 to disable initial seeds (start from an empty function);
  • NO_COV=1 to disable the coverage feedback;
  • TIR_REC=1to record generated TIR files (for evaluating non-coverage version);
Reproduce ablation study [click to expand]
# (1): General IR Mutation (No Coverage)*
TVM_HOME=$TVM_NO_COV_HOME PYTHONPATH=$TVM_HOME/python TIR_REC=1 NO_COV=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-1
python3 src/get_cov.py --folders ablation-1 # Evaluate samples on instrumented TVM to get coverage results.

# (2): (1) + Coverage Guidance
python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-2

# (3): (2) + Domain-Specific IR Mutation
LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-3

# (4): (3) + Random Pass Mutation
PASS=1 RANDOM_PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-4

# (5): (3) + Evolutionary IR-Pass Mutation
# aka: Best Tzer! Pleasse use this command if you want to compare Tzer with your own system~
PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-5 --tolerance 4

Note that fuzzing is performance-sensitive: To obtain reliable results, evaluation should be conducted in a "clean" environment (e.g., close irrelavant processes as many as possible). To determine how "clean" your environment is, you can log the load average of your Linux system. Expected load average should be around 1 or lower (as what we did in the experiments).

Installation

Expected requirements [click to expand]
  • Hardware: 8GB RAM; 256G Storage; X86 CPU; Good Network to GitHub; Docker (for Docker installation)
  • Software: Linux (tested under Manjaro and Ubuntu20.04. Other Linux distributions should also work)

We provide 3 methods for installing Tzer:

Docker Hub (Recommended, Out-of-the-box!) [click to expand]

Directly run Tzer in pre-built container image! Make sure you have docker installed.

docker run --rm -it tzerbot/oopsla
Docker Build (10~20 min., for customized development) [click to expand]

Build Tzer under a docker environment! Make sure you have docker installed.

  1. git clone https://github.com/Tzer-AnonBot/tzer.git && cd tzer
  2. docker build --tag tzer-oopsla:eval .
  3. docker run --rm -it tzer-oopsla:eval
Manual Build (20~30 min., for customized dev. and native performance) [click to expand]
Build Tzer natively on your Linux:

Prepare dependencies:

# Arch Linux / Manjaro
sudo pacman -Syy
sudo pacman -S compiler-rt llvm llvm-libs compiler-rt clang cmake git python3
# Ubuntu
sudo apt update
sudo apt install -y libfuzzer-12-dev # If you fail, try "libfuzzer-11-dev", "-10-dev", ...
sudo apt install -y clang cmake git python3

Build TVM and Tzer:

git clone https://github.com/Tzer-AnonBot/tzer.git
cd tzer/tvm_cov_patch

# Build TVM with intruments
bash ./build_tvm.sh # If you fail, check the script for step-by-step instruction;
cd ../../../
# If success:
# tvm with coverage is installed under `tvm_cov_patch/tvm`
# tvm without coverage is under `tvm_cov_patch/tvm-no-cov`

# Install Python dependency
python3 -m pip install -r requirements.txt

# Set up TVM_HOME and PYTHONPATH env var before using TVM and Tzer.
export TVM_HOME=$(realpath tvm_cov_patch/tvm)
export TVM_NO_COV_HOME=$(realpath tvm_cov_patch/tvm-no-cov)
export PYTHONPATH=$TVM_HOME/python

Extend Tzer

We implemented many re-usable functionalities for future and open research! To easily implement other coverage-guided fuzzing algorithm for TVM, after your installing TVM with memcov by applying tvm_cov_patch/memcov4tvm.patch to TVM (See tvm_cov_patch/build_tvm.sh), you can get current coverage of TVM by:

from tvm.contrib import coverage

print(coverage.get_now()) # Current visited # of CFG edges
print(coverage.get_total()) # Total number of # of CFG edges

coverage.push() # store current coverage snapshot to a stack and reset it to empty (useful for multi-process scenario)
coverage.pop()  # merge the top snapshot from the stack. 

Usage push-pop combo: Some times the target program might crash, but we don't want the fuzzer to be affected by the failure. Therefore, you can set a "safe guard" by:

  1. push: save current snapshot and reset the coverage hitmap;
  2. raise a sub-process to compile target IR & passes with TVM;
  3. pop: merge the snapshot of the sub-process and last stored snapshot (top of the stack) to get a complete coverage.

Latency of the combo is optimized to ~1ms as we applied bit-level optimization.

Cite Us

Please cite our paper if you find our contributions are helpful. :-)

@inproceedings{tzer-2022,
  title={Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation},
  author={Liu, Jiawei and Wei, Yuxiang and Yang, Sen and Deng, Yinlin and Zhang, Lingming},
  booktitle={Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications},
  year={2022}
}
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Releases(tvm-0.8.dev1040)
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023