[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Overview

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study

License: MIT

Codes for [Preprint] Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study

Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Introduction

This is the first fair and reproducible benchmark dedicated to assessing the "tricks" of training deep GNNs. We categorize existing approaches, investigate their hyperparameter sensitivity, and unify the basic configuration. Comprehensive evaluations are then conducted on tens of representative graph datasets including the recent large-scale Open Graph Benchmark (OGB), with diverse deep GNN backbones. Based on synergistic studies, we discover the transferable combo of superior training tricks, that lead us to attain the new state-of-the-art results for deep GCNs, across multiple representative graph datasets.

Requirements

Installation with Conda

conda create -n deep_gcn_benchmark
conda activate deep_gcn_benchmark
pip install -r requirements.txt

Our Installation Notes for PyTorch Geometric.

What env configs that we tried that have succeeded: Mac/Linux + cuda driver 11.2 + Torch with cuda 11.1 + torch_geometric/torch sparse/etc with cuda 11.1.

What env configs that we tried but didn't work: Linux+Cuda 11.1/11.0/10.2 + whatever version of Torch.

In the above case when it did work, we adopted the following installation commands, and it automatically downloaded built wheels, and the installation completes within seconds.

In the case when it did not work, the installation appears to be very slow (ten minutes level for torch sparse/torch scatter). Then the installation did not produce any error, while when import torch_geometric in python code, it reports errors of different types.

Installation codes that we adopted on Linux cuda 11.2 that did work:

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-geometric

Project Structure

.
├── Dataloader.py
├── main.py
├── trainer.py
├── models
│   ├── *.py
├── options
│   ├── base_options.py
│   └── configs
│       ├── *.yml
├── tricks
│   ├── tricks
│   │   ├── dropouts.py
│   │   ├── norms.py
│   │   ├── others.py
│   │   └── skipConnections.py
│   └── tricks_comb.py
└── utils.py

How to Use the Benchmark

Train Deep GCN models as your baselines

To train a deep GCN model <model> on dataset <dataset> as your baseline, run:

python main.py --compare_model=1 --cuda_num=0 --type_model=<model> --dataset=<dataset>
# <model>   in  [APPNP, DAGNN, GAT, GCN, GCNII, GPRGNN, JKNet, SGC]
# <dataset> in  [Cora, Citeseer, Pubmed, ogbn-arixv, CoauthorCS, CoauthorPhysics, AmazonComputers, AmazonPhoto, TEXAS, WISCONSIN, CORNELL, ACTOR]

we comprehensively explored the optimal hyperparameters for all models we implemented and train the models under the well-studied hyperparameter settings. For model-specific hyperparameter configs, please refer to options/configs/*.yml

Explore different trick combinations

To explore different trick combinations, we provide a tricks_comb model, which integrates different types of tricks as follows:

dropouts:        DropEdge, DropNode, FastGCN, LADIES
norms:           BatchNorm, PairNorm, NodeNorm, MeanNorm, GroupNorm, CombNorm
skipConnections: Residual, Initial, Jumping, Dense
others:          IdentityMapping

To train a tricks_comb model with specific tricks, run:

python main.py --compare_model=0 --cuda_num=0 --type_trick=<trick_1>+<trick_2>+...+<trick_n> --dataset=<dataset>

, where you can assign type_trick with any number of tricks. For instance, to train a trick_comb model with Initial, EdgeDrop, BatchNorm and IdentityMapping on Cora, run:

python main.py --compare_model=0 --cuda_num=0 --type_trick=Initial+EdgeDrop+BatchNorm+IdentityMapping --dataset=Cora

We provide two backbones --type_model=GCN and --type_tricks=SGC for trick combinations. Specifically, when --type_model=SGC and --type_trick=IdenityMapping co-occur, IdentityMapping has higher priority.

How to Contribute

You are welcome to make any type of contributions. Here we provide a brief guidance to add your own deep GCN models and tricks.

Add your own model

Several simple steps to add your own deep GCN model <DeepGCN>.

  1. Create a python file named <DeepGCN>.py
  2. Implement your own model as a torch.nn.Module, where the class name is recommended to be consistent with your filename <DeepGCN>
  3. Make sure the commonly-used hyperparameters is consistent with ours (listed as follows). To create any new hyperparameter, add it in options/base_options.py.
 --dim_hidden        # hidden dimension
 --num_layers        # number of GCN layers
 --dropout           # rate of dropout for GCN layers
 --lr:               # learning rate
 --weight_decay      # rate of l2 regularization
  1. Register your model in models/__init__.py by add the following codes:
from <DeepGCN> import <DeepGCN>
__all__.append('<DeepGCN>')
  1. You are recommend to use YAML to store your dataset-specific hyperparameter configuration. Create a YAML file <DeepGCN>.yml in options/configs and add the hyperparameters as the following style:
<dataset_1>
  <hyperparameter_1> : value_1
  <hyperparameter_2> : value_2

Now your own model <DeepGCN> should be added successfully into our benchmark framework. To test the performance of <DeepGCN> on <dataset>, run:

python main.py --compare_model=1 --type_model=<DeepGCN> --dataset=<dataset>

Add your own trick

As all implemented tricks are coupled in tricks_comb.py tightly, we do not recommend integrating your own trick to trick_comb to avoid unexpected errors. However, you can use the interfaces we provided in tricks/tricks/ to combine your own trick with ours.

Main Results and Leaderboard

  • Superior performance of our best combo with 32 layers deep GCNs
Model Ranking on Cora Test Accuracy
Ours 85.48
GCNII 85.29
APPNP 83.68
DAGNN 83.39
GPRGNN 83.13
JKNet 73.23
SGC 68.45
Model Ranking on Citeseer Test Accuracy
Ours 73.35
GCNII 73.24
DAGNN 72.59
APPNP 72.13
GPRGNN 71.01
SGC 61.92
JKNet 50.68
Model Ranking on PubMed Test Accuracy
Ours 80.76
DAGNN 80.58
APPNP 80.24
GCNII 79.91
GPRGNN 78.46
SGC 66.61
JKNet 63.77
Model Ranking on OGBN-ArXiv Test Accuracy
Ours 72.70
GCNII 72.60
DAGNN 71.46
GPRGNN 70.18
APPNP 66.94
JKNet 66.31
SGC 34.22
  • Transferability of our best combo with 32 layers deep GCNs
Models Average Ranking on (CS, Physics, Computers, Photo, Texas, Wisconsin, Cornell, Actor)
Ours 1.500
SGC 6.250
DAGNN 4.375
GCNII 3.875
JKNet 4.875
APPNP 4.000
GPRGNN 3.125
  • Takeaways of the best combo

Citation

if you find this repo is helpful, please cite

TBD
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022